Exploring the free energy landscape of proteins using magnetic tweezers.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2024-01-01 Epub Date: 2024-01-05 DOI:10.1016/bs.mie.2023.12.008
Hao Sun, Shimin Le, Zilong Guo, Hu Chen
{"title":"Exploring the free energy landscape of proteins using magnetic tweezers.","authors":"Hao Sun, Shimin Le, Zilong Guo, Hu Chen","doi":"10.1016/bs.mie.2023.12.008","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins fold to their native states by searching through the free energy landscapes. As single-domain proteins are the basic building block of multiple-domain proteins or protein complexes composed of subunits, the free energy landscapes of single-domain proteins are of critical importance to understand the folding and unfolding processes of proteins. To explore the free energy landscapes of proteins over large conformational space, the stability of native structure is perturbed by biochemical or mechanical means, and the conformational transition process is measured. In single molecular manipulation experiments, stretching force is applied to proteins, and the folding and unfolding transitions are recorded by the extension time course. Due to the broad force range and long-time stability of magnetic tweezers, the free energy landscape over large conformational space can be obtained. In this article, we describe the magnetic tweezers instrument design, protein construct design and preparation, fluid chamber preparation, common-used measuring protocols including force-ramp and force-jump measurements, and data analysis methods to construct the free energy landscape. Single-domain cold shock protein is introduced as an example to build its free energy landscape by magnetic tweezers measurements.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2023.12.008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins fold to their native states by searching through the free energy landscapes. As single-domain proteins are the basic building block of multiple-domain proteins or protein complexes composed of subunits, the free energy landscapes of single-domain proteins are of critical importance to understand the folding and unfolding processes of proteins. To explore the free energy landscapes of proteins over large conformational space, the stability of native structure is perturbed by biochemical or mechanical means, and the conformational transition process is measured. In single molecular manipulation experiments, stretching force is applied to proteins, and the folding and unfolding transitions are recorded by the extension time course. Due to the broad force range and long-time stability of magnetic tweezers, the free energy landscape over large conformational space can be obtained. In this article, we describe the magnetic tweezers instrument design, protein construct design and preparation, fluid chamber preparation, common-used measuring protocols including force-ramp and force-jump measurements, and data analysis methods to construct the free energy landscape. Single-domain cold shock protein is introduced as an example to build its free energy landscape by magnetic tweezers measurements.

利用磁性镊子探索蛋白质的自由能谱。
蛋白质通过搜索自由能谱折叠到其原生状态。由于单链蛋白质是多链蛋白质或由亚基组成的蛋白质复合物的基本构件,因此单链蛋白质的自由能谱对理解蛋白质的折叠和展开过程至关重要。为了探索蛋白质在大构象空间内的自由能谱,需要通过生化或机械手段扰动原生结构的稳定性,并测量构象转变过程。在单分子操作实验中,对蛋白质施加拉伸力,并通过拉伸时间过程记录折叠和展开转变。由于磁镊的作用力范围广且长时间稳定,因此可以获得大构象空间的自由能谱。本文介绍了构建自由能谱的磁镊仪器设计、蛋白质结构设计和制备、流体室制备、常用测量方案(包括力斜坡和力跳跃测量)以及数据分析方法。以单域冷休克蛋白为例,介绍如何通过磁镊测量构建其自由能谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信