{"title":"Abnormal upregulation of NUBP2 contributes to cancer progression in colorectal cancer.","authors":"Danfeng Lan, Junyu Wang, Guishun Sun, Lixia Jiang, Qiyun Chen, Sha Li, Haiyan Qu, Yibo Wang, Bian Wu","doi":"10.1007/s11010-024-04956-8","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC), a digestive tract malignancy with high mortality and morbidity, lacks effective biomarkers for clinical prognosis due to its complex molecular pathogenesis. Nucleotide binding protein 2 (NUBP2) plays a vital role in the assembly of cytosolic Fe/S protein and has been implicated in cancer progression. In this study, we found that NUBP2 was highly expressed in CRC by TCGA database analysis. Subsequently, we verified the expression of NUBP2 in CRC tumor tissues and para-carcinoma tissues using IHC staining, and further investigated its association with clinicopathological parameters. In vitro cell experiments were conducted to assess the role of NUBP2 in CRC by evaluating cell proliferation, migration, and apoptosis upon NUBP2 dysregulation. Furthermore, we established a subcutaneous CRC model to evaluate the impact of NUBP2 on tumor growth in vivo. Additionally, we performed mechanistic exploration using a Human Phospho-Kinase Array-Membrane. Our results showed higher expression of NUBP2 in CRC tissues, which positively correlated with the pathological stage, indicating its involvement in tumor malignancy. Functional studies demonstrated that NUBP2 knockdown reduced cell proliferation, increased apoptosis, and impaired migration ability. Moreover, NUBP2 knockdown inhibited tumor growth in mice. We also observed significant changes in the phosphorylation level of GSK3β upon NUBP2 knockdown or overexpression. Additionally, treatment with CHIR-99021 HCl, an inhibitor of GSK3β, reversed the malignant phenotype induced by NUBP2 overexpression. Overall, this study elucidated the functional role of NUBP2 in CRC progression both in vitro and in vivo, providing insights into the molecular mechanisms underlying CRC and potential implications for targeted therapeutic strategies.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"399-410"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-04956-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC), a digestive tract malignancy with high mortality and morbidity, lacks effective biomarkers for clinical prognosis due to its complex molecular pathogenesis. Nucleotide binding protein 2 (NUBP2) plays a vital role in the assembly of cytosolic Fe/S protein and has been implicated in cancer progression. In this study, we found that NUBP2 was highly expressed in CRC by TCGA database analysis. Subsequently, we verified the expression of NUBP2 in CRC tumor tissues and para-carcinoma tissues using IHC staining, and further investigated its association with clinicopathological parameters. In vitro cell experiments were conducted to assess the role of NUBP2 in CRC by evaluating cell proliferation, migration, and apoptosis upon NUBP2 dysregulation. Furthermore, we established a subcutaneous CRC model to evaluate the impact of NUBP2 on tumor growth in vivo. Additionally, we performed mechanistic exploration using a Human Phospho-Kinase Array-Membrane. Our results showed higher expression of NUBP2 in CRC tissues, which positively correlated with the pathological stage, indicating its involvement in tumor malignancy. Functional studies demonstrated that NUBP2 knockdown reduced cell proliferation, increased apoptosis, and impaired migration ability. Moreover, NUBP2 knockdown inhibited tumor growth in mice. We also observed significant changes in the phosphorylation level of GSK3β upon NUBP2 knockdown or overexpression. Additionally, treatment with CHIR-99021 HCl, an inhibitor of GSK3β, reversed the malignant phenotype induced by NUBP2 overexpression. Overall, this study elucidated the functional role of NUBP2 in CRC progression both in vitro and in vivo, providing insights into the molecular mechanisms underlying CRC and potential implications for targeted therapeutic strategies.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.