Michael Fromm, Owe Philipsen, Michael Spannowsky, Christopher Winterowd
{"title":"Simulating \\(Z_{2}\\) lattice gauge theory with the variational quantum thermalizer","authors":"Michael Fromm, Owe Philipsen, Michael Spannowsky, Christopher Winterowd","doi":"10.1140/epjqt/s40507-024-00232-2","DOIUrl":null,"url":null,"abstract":"<div><p>The properties of strongly-coupled lattice gauge theories at finite density as well as in real time have largely eluded first-principles studies on the lattice. This is due to the failure of importance sampling for systems with a complex action. An alternative to evade the sign problem is quantum simulation. Although still in its infancy, a lot of progress has been made in devising algorithms to address these problems. In particular, recent efforts have addressed the question of how to produce thermal Gibbs states on a quantum computer. In this study, we apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry. We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00232-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00232-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The properties of strongly-coupled lattice gauge theories at finite density as well as in real time have largely eluded first-principles studies on the lattice. This is due to the failure of importance sampling for systems with a complex action. An alternative to evade the sign problem is quantum simulation. Although still in its infancy, a lot of progress has been made in devising algorithms to address these problems. In particular, recent efforts have addressed the question of how to produce thermal Gibbs states on a quantum computer. In this study, we apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry. We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.