{"title":"Asymptotics of the determinant of the modified Bessel functions and the second Painlevé equation","authors":"Yu Chen, Shuai-Xia Xu, Yu-Qiu Zhao","doi":"10.1142/s2010326324500035","DOIUrl":null,"url":null,"abstract":"<p>In the paper, we consider the extended Gross–Witten–Wadia unitary matrix model by introducing a logarithmic term in the potential. The partition function of the model can be expressed equivalently in terms of the Toeplitz determinant with the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-entry being the modified Bessel functions of order <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>i</mi><mo stretchy=\"false\">−</mo><mi>j</mi><mo stretchy=\"false\">−</mo><mi>ν</mi></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ν</mi><mo>∈</mo><mi>ℂ</mi></math></span><span></span>. When the degree <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> is finite, we show that the Toeplitz determinant is described by the isomonodromy <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>-function of the Painlevé III equation. As a double scaling limit, we establish an asymptotic approximation of the logarithmic derivative of the Toeplitz determinant, expressed in terms of the Hastings–McLeod solution of the inhomogeneous Painlevé II equation with parameter <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ν</mi><mo stretchy=\"false\">+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span><span></span>. The asymptotics of the leading coefficient and recurrence coefficient of the associated orthogonal polynomials are also derived. We obtain the results by applying the Deift–Zhou nonlinear steepest descent method to the Riemann–Hilbert problem for orthogonal polynomials on the Hankel loop. The main concern here is the construction of a local parametrix at the critical point <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>z</mi><mo>=</mo><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span>, where the <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi></math></span><span></span>-function of the Jimbo–Miwa Lax pair for the inhomogeneous Painlevé II equation is involved.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper, we consider the extended Gross–Witten–Wadia unitary matrix model by introducing a logarithmic term in the potential. The partition function of the model can be expressed equivalently in terms of the Toeplitz determinant with the -entry being the modified Bessel functions of order , . When the degree is finite, we show that the Toeplitz determinant is described by the isomonodromy -function of the Painlevé III equation. As a double scaling limit, we establish an asymptotic approximation of the logarithmic derivative of the Toeplitz determinant, expressed in terms of the Hastings–McLeod solution of the inhomogeneous Painlevé II equation with parameter . The asymptotics of the leading coefficient and recurrence coefficient of the associated orthogonal polynomials are also derived. We obtain the results by applying the Deift–Zhou nonlinear steepest descent method to the Riemann–Hilbert problem for orthogonal polynomials on the Hankel loop. The main concern here is the construction of a local parametrix at the critical point , where the -function of the Jimbo–Miwa Lax pair for the inhomogeneous Painlevé II equation is involved.