{"title":"Sunset Yellow induced biochemical and histopathological alterations in rat brain sub-regions","authors":"Diksha Bhatt , Krati Vyas, Shakuntala Singh, P.J. John, I.P. Soni","doi":"10.1016/j.acthis.2024.152155","DOIUrl":null,"url":null,"abstract":"<div><p>Sunset Yellow, a synthetic orange azo food dye was examined in this study for its impact on the Wistar rat brain sub-regions. The dye was administered orally to weanling rats at the Acceptable Daily Intake level (4 mg/kg/bw) for 40 days, and brain sub-regions viz., frontal cortex, cerebellum and hippocampus were examined for biochemical and histopathological changes. The results showed a significant decrease in tissue protein levels, superoxide dismutase, and catalase activity, as well as a significant increase in lipid peroxide levels in all brain sub-regions. Glutathione-S-transferase and Glutathione Reductase activities decreased, while Glutathione peroxidase activity increased. The biogenic amine levels and Acetylcholinesterase activity were also altered, with the frontal cortex and hippocampus being the most affected. Additionally, the dye caused histopathological damage in all brain sub-regions examined. This study indicates that the ADI level of Sunset Yellow may adversely affect brain tissue by causing oxidative damage.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128124000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Sunset Yellow, a synthetic orange azo food dye was examined in this study for its impact on the Wistar rat brain sub-regions. The dye was administered orally to weanling rats at the Acceptable Daily Intake level (4 mg/kg/bw) for 40 days, and brain sub-regions viz., frontal cortex, cerebellum and hippocampus were examined for biochemical and histopathological changes. The results showed a significant decrease in tissue protein levels, superoxide dismutase, and catalase activity, as well as a significant increase in lipid peroxide levels in all brain sub-regions. Glutathione-S-transferase and Glutathione Reductase activities decreased, while Glutathione peroxidase activity increased. The biogenic amine levels and Acetylcholinesterase activity were also altered, with the frontal cortex and hippocampus being the most affected. Additionally, the dye caused histopathological damage in all brain sub-regions examined. This study indicates that the ADI level of Sunset Yellow may adversely affect brain tissue by causing oxidative damage.