Reinforcement learning and meta-decision-making

IF 4.9 2区 心理学 Q1 BEHAVIORAL SCIENCES
Pieter Verbeke , Tom Verguts
{"title":"Reinforcement learning and meta-decision-making","authors":"Pieter Verbeke ,&nbsp;Tom Verguts","doi":"10.1016/j.cobeha.2024.101374","DOIUrl":null,"url":null,"abstract":"<div><p>A key aspect of cognitive flexibility is to efficiently make use of earlier experience to attain one’s goals. This requires learning, but also a modular, and more specifically hierarchical, structure. We hold that both are required, but combining them leads to several computational challenges that brains and artificial agents (learn to) deal with. In a hierarchical structure, meta-decisions must be made, of which two types can be distinguished. First, a (meta-)decision may involve choosing which (lower-level) modules to select (module choice). Second, it may consist of choosing appropriate parameter settings within a module (parameter tuning). Furthermore, prediction error monitoring may allow determining the right meta-decision (module choice or parameter tuning). We discuss computational challenges and empirical evidence relative to how these two meta-decisions may be implemented to support learning for cognitive flexibility.</p></div>","PeriodicalId":56191,"journal":{"name":"Current Opinion in Behavioral Sciences","volume":"57 ","pages":"Article 101374"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Behavioral Sciences","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352154624000251","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A key aspect of cognitive flexibility is to efficiently make use of earlier experience to attain one’s goals. This requires learning, but also a modular, and more specifically hierarchical, structure. We hold that both are required, but combining them leads to several computational challenges that brains and artificial agents (learn to) deal with. In a hierarchical structure, meta-decisions must be made, of which two types can be distinguished. First, a (meta-)decision may involve choosing which (lower-level) modules to select (module choice). Second, it may consist of choosing appropriate parameter settings within a module (parameter tuning). Furthermore, prediction error monitoring may allow determining the right meta-decision (module choice or parameter tuning). We discuss computational challenges and empirical evidence relative to how these two meta-decisions may be implemented to support learning for cognitive flexibility.

强化学习和元决策
认知灵活性的一个重要方面是有效利用先前的经验来实现自己的目标。这不仅需要学习,还需要模块化结构,更具体地说就是分层结构。我们认为这两者都需要,但将两者结合起来会给大脑和人工代理(学习)带来一些计算上的挑战。在分层结构中,必须做出元决策,其中可分为两类。首先,(元)决策可能涉及选择哪些(低级)模块(模块选择)。其次,它可能包括在模块内选择适当的参数设置(参数调整)。此外,预测误差监测还可以帮助确定正确的元决策(模块选择或参数调整)。我们将讨论如何实施这两项元决策以支持认知灵活性学习所面临的计算挑战和经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Behavioral Sciences
Current Opinion in Behavioral Sciences Neuroscience-Cognitive Neuroscience
CiteScore
10.90
自引率
2.00%
发文量
135
期刊介绍: Current Opinion in Behavioral Sciences is a systematic, integrative review journal that provides a unique and educational platform for updates on the expanding volume of information published in the field of behavioral sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信