{"title":"Decentralized control using selectors for optimal steady-state operation with changing active constraints","authors":"Lucas Ferreira Bernardino, Sigurd Skogestad","doi":"10.1016/j.jprocont.2024.103194","DOIUrl":null,"url":null,"abstract":"<div><p>We study the optimal steady-state operation of processes where the active constraints change. The aim of this work is to eliminate or reduce the need for a real-time optimization layer, moving the optimization into the control layer by switching between appropriately selected controlled variables (CVs) in a simple way. The challenge is that the best CVs, or more precisely the reduced cost gradients associated with the unconstrained degrees of freedom, change with the active constraints. This work proposes a framework based on decentralized control that operates optimally in all active constraint regions, with region switching mediated by selectors. A key point is that the nullspace associated with the unconstrained cost gradient needs to be selected in accordance with the constraint directions so that selectors can be used. A main benefit is that the number of SISO controllers that need to be designed is only equal to the number of process inputs plus constraints. The main assumptions are that the unconstrained cost gradient is available online and that the number of constraints does not exceed the number of process inputs. The optimality and ease of implementation are illustrated in a simulated toy example with linear constraints and a quadratic cost function. In addition, the proposed framework is successfully applied to the nonlinear Williams–Otto reactor case study.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"137 ","pages":"Article 103194"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959152424000349/pdfft?md5=310df9c124b3595ad691d9bd3b5f0843&pid=1-s2.0-S0959152424000349-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000349","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the optimal steady-state operation of processes where the active constraints change. The aim of this work is to eliminate or reduce the need for a real-time optimization layer, moving the optimization into the control layer by switching between appropriately selected controlled variables (CVs) in a simple way. The challenge is that the best CVs, or more precisely the reduced cost gradients associated with the unconstrained degrees of freedom, change with the active constraints. This work proposes a framework based on decentralized control that operates optimally in all active constraint regions, with region switching mediated by selectors. A key point is that the nullspace associated with the unconstrained cost gradient needs to be selected in accordance with the constraint directions so that selectors can be used. A main benefit is that the number of SISO controllers that need to be designed is only equal to the number of process inputs plus constraints. The main assumptions are that the unconstrained cost gradient is available online and that the number of constraints does not exceed the number of process inputs. The optimality and ease of implementation are illustrated in a simulated toy example with linear constraints and a quadratic cost function. In addition, the proposed framework is successfully applied to the nonlinear Williams–Otto reactor case study.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.