{"title":"Genome assembly and multi-omic analyses reveal the mechanisms underlying flower color formation in Torenia fournieri.","authors":"Jiaxing Song, Haiming Kong, Jing Yang, Jiaxian Jing, Siyu Li, Nan Ma, Rongchen Yang, Yuman Cao, Yafang Wang, Tianming Hu, Peizhi Yang","doi":"10.1002/tpg2.20439","DOIUrl":null,"url":null,"abstract":"<p><p>Torenia fournieri Lind. is an ornamental plant that is popular for its numerous flowers and variety of colors. However, its genomic evolutionary history and the genetic and metabolic bases of flower color formation remain poorly understood. Here, we report the first T. fournieri reference genome, which was resolved to the chromosome scale and was 164.4 Mb in size. Phylogenetic analyses clarified relationships with other plant species, and a comparative genomic analysis indicated that the shared ancestor of T. fournieri and Antirrhinum majus underwent a whole genome duplication event. Joint transcriptomic and metabolomic analyses identified many metabolites related to pelargonidin, peonidin, and naringenin production in rose (TfR)-colored flowers. Samples with blue (TfB) and deep blue (TfD) colors contained numerous derivatives of petunidin, cyanidin, quercetin, and malvidin; differences in the abundances of these metabolites and expression levels of the associated genes were hypothesized to be responsible for variety-specific differences in flower color. Furthermore, the genes encoding flavonoid 3-hydroxylase, anthocyanin synthase, and anthocyanin reductase were differentially expressed between flowers of different colors. Overall, we successfully identified key genes and metabolites involved in T. fournieri flower color formation. The data provided by the chromosome-scale genome assembly establish a basis for understanding the differentiation of this species and will facilitate future genetic studies and genomic-assisted breeding.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20439"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20439","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Torenia fournieri Lind. is an ornamental plant that is popular for its numerous flowers and variety of colors. However, its genomic evolutionary history and the genetic and metabolic bases of flower color formation remain poorly understood. Here, we report the first T. fournieri reference genome, which was resolved to the chromosome scale and was 164.4 Mb in size. Phylogenetic analyses clarified relationships with other plant species, and a comparative genomic analysis indicated that the shared ancestor of T. fournieri and Antirrhinum majus underwent a whole genome duplication event. Joint transcriptomic and metabolomic analyses identified many metabolites related to pelargonidin, peonidin, and naringenin production in rose (TfR)-colored flowers. Samples with blue (TfB) and deep blue (TfD) colors contained numerous derivatives of petunidin, cyanidin, quercetin, and malvidin; differences in the abundances of these metabolites and expression levels of the associated genes were hypothesized to be responsible for variety-specific differences in flower color. Furthermore, the genes encoding flavonoid 3-hydroxylase, anthocyanin synthase, and anthocyanin reductase were differentially expressed between flowers of different colors. Overall, we successfully identified key genes and metabolites involved in T. fournieri flower color formation. The data provided by the chromosome-scale genome assembly establish a basis for understanding the differentiation of this species and will facilitate future genetic studies and genomic-assisted breeding.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.