Bifurcations of Sliding Heteroclinic Cycles in Three-Dimensional Filippov Systems

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yousu Huang, Qigui Yang
{"title":"Bifurcations of Sliding Heteroclinic Cycles in Three-Dimensional Filippov Systems","authors":"Yousu Huang, Qigui Yang","doi":"10.1142/s0218127424500354","DOIUrl":null,"url":null,"abstract":"<p>Global bifurcations with sliding have rarely been studied in three-dimensional piecewise smooth systems. In this paper, codimension-2 bifurcations of nondegenerate sliding heteroclinic cycle <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span> are investigated in three-dimensional Filippov systems. Two cases of sliding heteroclinic cycle are discussed: <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> connecting two saddle-foci, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> connecting one saddle-focus and one saddle. It is proved that at most one sliding homoclinic or one sliding periodic orbit can bifurcate from <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span> under certain conditions at the eigenvalues of the equilibria, but they cannot coexist. The asymptotic stability of the sliding periodic orbit and the structural feature of the bifurcation curves of homoclinic orbits are further studied. Finally, two numerical examples corresponding to cases <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, respectively, are simulated to verify the theoretical results.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"35 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500354","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Global bifurcations with sliding have rarely been studied in three-dimensional piecewise smooth systems. In this paper, codimension-2 bifurcations of nondegenerate sliding heteroclinic cycle Γ are investigated in three-dimensional Filippov systems. Two cases of sliding heteroclinic cycle are discussed: (C1) connecting two saddle-foci, (C2) connecting one saddle-focus and one saddle. It is proved that at most one sliding homoclinic or one sliding periodic orbit can bifurcate from Γ under certain conditions at the eigenvalues of the equilibria, but they cannot coexist. The asymptotic stability of the sliding periodic orbit and the structural feature of the bifurcation curves of homoclinic orbits are further studied. Finally, two numerical examples corresponding to cases (C1) and (C2), respectively, are simulated to verify the theoretical results.

三维菲利波夫系统中滑动异次元循环的分岔
在三维片状光滑系统中,很少有人研究滑动的全局分岔。本文研究了三维菲利波夫系统中非enerate 滑动异面循环 Γ 的第 2 维分岔。本文讨论了滑动异面循环的两种情况:(C1) 连接两个鞍焦;(C2) 连接一个鞍焦和一个鞍。研究证明,在平衡点特征值的特定条件下,最多有一个滑动同次轨道或一个滑动周期轨道能从Γ分岔出来,但它们不能共存。研究还进一步探讨了滑动周期轨道的渐近稳定性和同次轨道分岔曲线的结构特征。最后,模拟了分别对应于情况 (C1) 和情况 (C2) 的两个数值实例,以验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信