{"title":"β-elemene promotes miR-127-3p maturation, induces NSCLCs autophagy, and enhances macrophage M1 polarization through exosomal communication","authors":"Xiahui Wu, Jie Wu, Tingting Dai, Qiangcheng Wang, Shengjie Cai, Xuehan Wei, Jing Chen, Ziyu Jiang","doi":"10.1016/j.jpha.2024.03.002","DOIUrl":null,"url":null,"abstract":"β-elemene has been observed to exert inhibitory effects on a multitude of tumors, primarily through multiple pathways such as the inhibition of cancer cell proliferation and the induction of apoptosis. The present study is designed to elucidate the role and underlying mechanisms of β-elemene in the therapeutic intervention of non-small cell lung cancer (NSCLC). Both in vitro and in vivo experimental models corroborate the inhibitory potency of β-elemene on NSCLCs. Our findings indicate that β-elemene facilitates the maturation of miR-127-3p by inhibiting CBX8. Functioning as an upstream regulator of MAPK4, miR-127-3p deactivates the Akt/mTOR/p70S6K pathway by targeting MAPK4, thereby inducing autophagy in NSCLCs. Additionally, β-elemene augments the packaging of miR-127-3p into exosomes via SYNCRIP. Exosomal miR-127-3p further stimulates M1 polarization of macrophages by suppressing ZC3H4. Taken together, the detailed understanding of the mechanisms through which β-elemene induces autophagy in NSCLCs and facilitates M1 polarization of macrophages provides compelling scientific evidence supporting its potential utility in NSCLC treatment.","PeriodicalId":16737,"journal":{"name":"Journal of Pharmaceutical Analysis","volume":"23 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.03.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
β-elemene has been observed to exert inhibitory effects on a multitude of tumors, primarily through multiple pathways such as the inhibition of cancer cell proliferation and the induction of apoptosis. The present study is designed to elucidate the role and underlying mechanisms of β-elemene in the therapeutic intervention of non-small cell lung cancer (NSCLC). Both in vitro and in vivo experimental models corroborate the inhibitory potency of β-elemene on NSCLCs. Our findings indicate that β-elemene facilitates the maturation of miR-127-3p by inhibiting CBX8. Functioning as an upstream regulator of MAPK4, miR-127-3p deactivates the Akt/mTOR/p70S6K pathway by targeting MAPK4, thereby inducing autophagy in NSCLCs. Additionally, β-elemene augments the packaging of miR-127-3p into exosomes via SYNCRIP. Exosomal miR-127-3p further stimulates M1 polarization of macrophages by suppressing ZC3H4. Taken together, the detailed understanding of the mechanisms through which β-elemene induces autophagy in NSCLCs and facilitates M1 polarization of macrophages provides compelling scientific evidence supporting its potential utility in NSCLC treatment.
期刊介绍:
The Journal of Pharmaceutical Analysis (JPA), established in 2011, serves as the official publication of Xi'an Jiaotong University.
JPA is a monthly, peer-reviewed, open-access journal dedicated to disseminating noteworthy original research articles, review papers, short communications, news, research highlights, and editorials in the realm of Pharmacy Analysis. Encompassing a wide spectrum of topics, including Pharmaceutical Analysis, Analytical Techniques and Methods, Pharmacology, Metabolism, Drug Delivery, Cellular Imaging & Analysis, Natural Products, and Biosensing, JPA provides a comprehensive platform for scholarly discourse and innovation in the field.