A Second-Order Length-Preserving and Unconditionally Energy Stable Rotational Discrete Gradient Method for Oseen-Frank Gradient Flows

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jie Xu,Xiaotian Yang, Zhiguo Yang
{"title":"A Second-Order Length-Preserving and Unconditionally Energy Stable Rotational Discrete Gradient Method for Oseen-Frank Gradient Flows","authors":"Jie Xu,Xiaotian Yang, Zhiguo Yang","doi":"10.4208/cicp.oa-2023-0191","DOIUrl":null,"url":null,"abstract":"We present a second-order strictly length-preserving and unconditionally\nenergy-stable rotational discrete gradient (Rdg) scheme for the numerical approximation of the Oseen-Frank gradient flows with anisotropic elastic energy functional. Two\nessential ingredients of the Rdg method are reformulation of the length constrained\ngradient flow into an unconstrained rotational form and discrete gradient discretization for the energy variation. Besides the well-known mean-value and Gonzalez discrete gradients, we propose a novel Oseen-Frank discrete gradient, specifically designed for the solution of Oseen-Frank gradient flow. We prove that the proposed\nOseen-Frank discrete gradient satisfies the energy difference relation, thus the resultant Rdg scheme is energy stable. Numerical experiments demonstrate the efficiency\nand accuracy of the proposed Rdg method and its capability for providing reliable\nsimulation results with highly disparate elastic coefficients.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0191","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a second-order strictly length-preserving and unconditionally energy-stable rotational discrete gradient (Rdg) scheme for the numerical approximation of the Oseen-Frank gradient flows with anisotropic elastic energy functional. Two essential ingredients of the Rdg method are reformulation of the length constrained gradient flow into an unconstrained rotational form and discrete gradient discretization for the energy variation. Besides the well-known mean-value and Gonzalez discrete gradients, we propose a novel Oseen-Frank discrete gradient, specifically designed for the solution of Oseen-Frank gradient flow. We prove that the proposed Oseen-Frank discrete gradient satisfies the energy difference relation, thus the resultant Rdg scheme is energy stable. Numerical experiments demonstrate the efficiency and accuracy of the proposed Rdg method and its capability for providing reliable simulation results with highly disparate elastic coefficients.
奥森-弗兰克梯度流的二阶保长和无条件能量稳定旋转离散梯度法
我们提出了一种二阶严格长度保留和无条件能量稳定的旋转离散梯度(Rdg)方案,用于各向异性弹性能量函数的奥森-弗兰克梯度流的数值逼近。Rdg 方法的两个基本要素是将长度约束梯度流重新表述为无约束旋转形式,以及对能量变化进行离散梯度离散化。除了众所周知的均值梯度和冈萨雷斯离散梯度外,我们还提出了一种新颖的奥森-弗兰克离散梯度,专门用于求解奥森-弗兰克梯度流。我们证明了所提出的奥森-弗兰克离散梯度满足能量差关系,因此所产生的 Rdg 方案是能量稳定的。数值实验证明了所提出的 Rdg 方法的高效性和准确性,以及在弹性系数差异很大的情况下提供可靠模拟结果的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信