Half-factorial real quadratic orders

Pub Date : 2024-03-12 DOI:10.1007/s00013-024-01969-z
Paul Pollack
{"title":"Half-factorial real quadratic orders","authors":"Paul Pollack","doi":"10.1007/s00013-024-01969-z","DOIUrl":null,"url":null,"abstract":"<div><p>Recall that <i>D</i> is a <span>half-factorial domain</span> (HFD) when <i>D</i> is atomic and every equation <span>\\(\\pi _1\\cdots \\pi _k = \\rho _1 \\cdots \\rho _\\ell \\)</span>, with all <span>\\(\\pi _i\\)</span> and <span>\\(\\rho _j\\)</span> irreducible in <i>D</i>, implies <span>\\(k=\\ell \\)</span>. We explain how techniques introduced to attack Artin’s primitive root conjecture can be applied to understand half-factoriality of orders in real quadratic number fields. In particular, we prove that (a) there are infinitely many real quadratic orders that are half-factorial domains, and (b) under the generalized Riemann hypothesis, <span>\\({\\mathbb {Q}}(\\sqrt{2})\\)</span> contains infinitely many HFD orders.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01969-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recall that D is a half-factorial domain (HFD) when D is atomic and every equation \(\pi _1\cdots \pi _k = \rho _1 \cdots \rho _\ell \), with all \(\pi _i\) and \(\rho _j\) irreducible in D, implies \(k=\ell \). We explain how techniques introduced to attack Artin’s primitive root conjecture can be applied to understand half-factoriality of orders in real quadratic number fields. In particular, we prove that (a) there are infinitely many real quadratic orders that are half-factorial domains, and (b) under the generalized Riemann hypothesis, \({\mathbb {Q}}(\sqrt{2})\) contains infinitely many HFD orders.

分享
查看原文
半因子实二次阶
回想一下,当 D 是原子且每个等式 \(\pi _1\cdots \pi _k = \rho _1 \cdots \rho _\ell \),且所有 \(\pi _i\) 和 \(\rho _j\) 在 D 中不可还原时,D 就是一个半因子域(HFD),这意味着 \(k=\ell \)。我们解释了为攻克阿尔丁的原始根猜想而引入的技术如何应用于理解实二次数域中阶的半因子性。特别是,我们证明了:(a)有无限多的实二次阶是半因子域;(b)在广义黎曼假设下,\({\mathbb {Q}}(\sqrt{2})\) 包含无限多的 HFD 阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信