Unified results for existence and compactness in the prescribed fractional Q-curvature problem

Yan Li, Zhongwei Tang, Heming Wang, Ning Zhou
{"title":"Unified results for existence and compactness in the prescribed fractional Q-curvature problem","authors":"Yan Li, Zhongwei Tang, Heming Wang, Ning Zhou","doi":"10.1007/s00030-024-00927-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the problem of prescribing fractional <i>Q</i>-curvature of order <span>\\(2\\sigma \\)</span> for a conformal metric on the standard sphere <span>\\(\\mathbb {S}^n\\)</span> with <span>\\(\\sigma \\in (0,n/2)\\)</span> and <span>\\(n\\ge 3\\)</span>. Compactness and existence results are obtained in terms of the flatness order <span>\\(\\beta \\)</span> of the prescribed curvature function <i>K</i>. Making use of integral representations and perturbation result, we develop a unified approach to obtain these results when <span>\\(\\beta \\in [n-2\\sigma ,n)\\)</span> for all <span>\\(\\sigma \\in (0,n/2)\\)</span>. This work generalizes the corresponding results of Jin-Li-Xiong (Math Ann 369:109–151, 2017) for <span>\\(\\beta \\in (n-2\\sigma ,n)\\)</span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00927-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the problem of prescribing fractional Q-curvature of order \(2\sigma \) for a conformal metric on the standard sphere \(\mathbb {S}^n\) with \(\sigma \in (0,n/2)\) and \(n\ge 3\). Compactness and existence results are obtained in terms of the flatness order \(\beta \) of the prescribed curvature function K. Making use of integral representations and perturbation result, we develop a unified approach to obtain these results when \(\beta \in [n-2\sigma ,n)\) for all \(\sigma \in (0,n/2)\). This work generalizes the corresponding results of Jin-Li-Xiong (Math Ann 369:109–151, 2017) for \(\beta \in (n-2\sigma ,n)\).

规定分数 Q曲率问题中存在性和紧凑性的统一结果
在本文中,我们研究了在标准球面 \(\mathbb {S}^n\) 上为共形度量规定阶为 \(2\sigma \) 的分数 Q 曲率问题,该度量具有 \(\sigma \in (0,n/2)\) 和 \(n\ge 3\) 。利用积分表征和扰动结果,我们开发了一种统一的方法来获得这些结果,即当\(\beta\in [n-2\sigma ,n)\)对于所有\(\sigma\in (0,n/2)\)时。这项工作概括了熊金力(Math Ann 369:109-151,2017)对于(n-2 sigma ,n)的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信