{"title":"Tangential Cone Condition for the Full Waveform Forward Operator in the Viscoelastic Regime: The Nonlocal Case","authors":"Matthias Eller, Roland Griesmaier, Andreas Rieder","doi":"10.1137/23m1551845","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 412-432, April 2024. <br/> Abstract. We discuss mapping properties of the parameter-to-state map of full waveform inversion and generalize the results of [M. Eller and A. Rieder, Inverse Problems, 37 (2021), 085011] from the acoustic to the viscoelastic wave equation. In particular, we establish injectivity of the Fréchet derivative of the parameter-to-state map for a semidiscrete seismic inverse problem in the viscoelastic regime. Here the finite-dimensional parameter space is restricted to functions having global support in the propagation medium (the nonlocal case) and that are locally linearly independent. As a consequence, we deduce local conditional well-posedness of this nonlinear inverse problem. Furthermore, we show that the tangential cone condition holds, which is an essential prerequisite in the convergence analysis of a variety of inversion algorithms for nonlinear ill-posed problems.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1551845","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 412-432, April 2024. Abstract. We discuss mapping properties of the parameter-to-state map of full waveform inversion and generalize the results of [M. Eller and A. Rieder, Inverse Problems, 37 (2021), 085011] from the acoustic to the viscoelastic wave equation. In particular, we establish injectivity of the Fréchet derivative of the parameter-to-state map for a semidiscrete seismic inverse problem in the viscoelastic regime. Here the finite-dimensional parameter space is restricted to functions having global support in the propagation medium (the nonlocal case) and that are locally linearly independent. As a consequence, we deduce local conditional well-posedness of this nonlinear inverse problem. Furthermore, we show that the tangential cone condition holds, which is an essential prerequisite in the convergence analysis of a variety of inversion algorithms for nonlinear ill-posed problems.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.