{"title":"Biomethane production using goat manure and cheese whey: statistical analysis of the effect of mixture composition","authors":"","doi":"10.1007/s43153-024-00442-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Lignocellulosic biomass and agricultural residues rich in carbohydrates, lipids, and proteins are promising sources for renewable energy production, particularly in the field of biofuel. Goat manure (GM) is a suitable raw material for the anaerobic digestion process owing to its high total nitrogen content, besides providing stability to fermentation. However, its utilization results in a relatively low biogas production yield. This yield can be significantly increased by co-digesting animal manure with co-substrates such as cheese whey (CW). Therefore, this study applied the Simplex Lattice experimental design to verify the biomethane production through different mixture concentrations of goat manure and cheese whey using bench reactors in batch mode. The volumetric compositions (CW<sub>100</sub>/GM<sub>0</sub>, CW<sub>75</sub>/GM<sub>25</sub>, CW<sub>50</sub>/GM<sub>50</sub>, CW<sub>25</sub>/GM<sub>75</sub>, CW<sub>0</sub>/GM<sub>100</sub>) were evaluated by adjusting linear and quadratic models. The results presented COD removal efficiencies between 40.07 and 63.73% and total volatile solids removal between 22.87 and 58.99%. According to the statistical analysis of the Simplex Lattice design, co-digestion showed favorability for methane production compared to goat manure alone. Furthermore, the maximum methane production yield (MY<sub>COD</sub>) was 319.89 mL-CH<sub>4</sub>/gCOD, with a productivity rate (MYPR) of 3.39 mL-CH<sub>4</sub>/gCOD.d. These maximum values were observed in the CW<sub>75</sub>/GM<sub>25</sub> condition. The quadratic model exhibited the best fit for the design adopted.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00442-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulosic biomass and agricultural residues rich in carbohydrates, lipids, and proteins are promising sources for renewable energy production, particularly in the field of biofuel. Goat manure (GM) is a suitable raw material for the anaerobic digestion process owing to its high total nitrogen content, besides providing stability to fermentation. However, its utilization results in a relatively low biogas production yield. This yield can be significantly increased by co-digesting animal manure with co-substrates such as cheese whey (CW). Therefore, this study applied the Simplex Lattice experimental design to verify the biomethane production through different mixture concentrations of goat manure and cheese whey using bench reactors in batch mode. The volumetric compositions (CW100/GM0, CW75/GM25, CW50/GM50, CW25/GM75, CW0/GM100) were evaluated by adjusting linear and quadratic models. The results presented COD removal efficiencies between 40.07 and 63.73% and total volatile solids removal between 22.87 and 58.99%. According to the statistical analysis of the Simplex Lattice design, co-digestion showed favorability for methane production compared to goat manure alone. Furthermore, the maximum methane production yield (MYCOD) was 319.89 mL-CH4/gCOD, with a productivity rate (MYPR) of 3.39 mL-CH4/gCOD.d. These maximum values were observed in the CW75/GM25 condition. The quadratic model exhibited the best fit for the design adopted.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.