FLM-ICR: a federated learning model for classification of internet of vehicle terminals using connection records

Kai Yang, Jiawei Du, Jingchao Liu, Feng Xu, Ye Tang, Ming Liu, Zhibin Li
{"title":"FLM-ICR: a federated learning model for classification of internet of vehicle terminals using connection records","authors":"Kai Yang, Jiawei Du, Jingchao Liu, Feng Xu, Ye Tang, Ming Liu, Zhibin Li","doi":"10.1186/s13677-024-00623-x","DOIUrl":null,"url":null,"abstract":"With the rapid growth of Internet of Vehicles (IoV) technology, the performance and privacy of IoV terminals (IoVT) have become increasingly important. This paper proposes a federated learning model for IoVT classification using connection records (FLM-ICR) to address privacy concerns and poor computational performance in analyzing users' private data in IoV. FLM-ICR, in the horizontally federated learning client-server architecture, utilizes an improved multi-layer perceptron and logistic regression network as the model backbone, employs the federated momentum gradient algorithm as the local model training optimizer, and uses the federated Gaussian differential privacy algorithm to protect the security of the computation process. The experiment evaluates the model's classification performance using the confusion matrix, explores the impact of client collaboration on model performance, demonstrates the model's suitability for imbalanced data distribution, and confirms the effectiveness of federated learning for model training. FLM-ICR achieves the accuracy, precision, recall, specificity, and F1 score of 0.795, 0.735, 0.835, 0.75, and 0.782, respectively, outperforming existing research methods and balancing classification performance and privacy security, making it suitable for IoV computation and analysis of private data.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00623-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid growth of Internet of Vehicles (IoV) technology, the performance and privacy of IoV terminals (IoVT) have become increasingly important. This paper proposes a federated learning model for IoVT classification using connection records (FLM-ICR) to address privacy concerns and poor computational performance in analyzing users' private data in IoV. FLM-ICR, in the horizontally federated learning client-server architecture, utilizes an improved multi-layer perceptron and logistic regression network as the model backbone, employs the federated momentum gradient algorithm as the local model training optimizer, and uses the federated Gaussian differential privacy algorithm to protect the security of the computation process. The experiment evaluates the model's classification performance using the confusion matrix, explores the impact of client collaboration on model performance, demonstrates the model's suitability for imbalanced data distribution, and confirms the effectiveness of federated learning for model training. FLM-ICR achieves the accuracy, precision, recall, specificity, and F1 score of 0.795, 0.735, 0.835, 0.75, and 0.782, respectively, outperforming existing research methods and balancing classification performance and privacy security, making it suitable for IoV computation and analysis of private data.
FLM-ICR:利用连接记录对车载互联网终端进行分类的联合学习模型
随着车联网(IoV)技术的快速发展,车联网终端(IoVT)的性能和隐私变得越来越重要。本文提出了一种利用连接记录进行 IoVT 分类的联合学习模型(FLM-ICR),以解决在 IoV 中分析用户隐私数据时存在的隐私问题和计算性能低下的问题。FLM-ICR采用横向联盟学习的客户端-服务器架构,以改进的多层感知器和逻辑回归网络作为模型骨干,采用联盟动量梯度算法作为局部模型训练优化器,并使用联盟高斯差分隐私算法保护计算过程的安全性。实验利用混淆矩阵评估了模型的分类性能,探讨了客户端协作对模型性能的影响,证明了模型对不平衡数据分布的适用性,并证实了联合学习在模型训练中的有效性。FLM-ICR 的准确度、精确度、召回率、特异性和 F1 分数分别达到了 0.795、0.735、0.835、0.75 和 0.782,优于现有研究方法,兼顾了分类性能和隐私安全,适用于 IoV 计算和隐私数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信