Kai Yang, Jiawei Du, Jingchao Liu, Feng Xu, Ye Tang, Ming Liu, Zhibin Li
{"title":"FLM-ICR: a federated learning model for classification of internet of vehicle terminals using connection records","authors":"Kai Yang, Jiawei Du, Jingchao Liu, Feng Xu, Ye Tang, Ming Liu, Zhibin Li","doi":"10.1186/s13677-024-00623-x","DOIUrl":null,"url":null,"abstract":"With the rapid growth of Internet of Vehicles (IoV) technology, the performance and privacy of IoV terminals (IoVT) have become increasingly important. This paper proposes a federated learning model for IoVT classification using connection records (FLM-ICR) to address privacy concerns and poor computational performance in analyzing users' private data in IoV. FLM-ICR, in the horizontally federated learning client-server architecture, utilizes an improved multi-layer perceptron and logistic regression network as the model backbone, employs the federated momentum gradient algorithm as the local model training optimizer, and uses the federated Gaussian differential privacy algorithm to protect the security of the computation process. The experiment evaluates the model's classification performance using the confusion matrix, explores the impact of client collaboration on model performance, demonstrates the model's suitability for imbalanced data distribution, and confirms the effectiveness of federated learning for model training. FLM-ICR achieves the accuracy, precision, recall, specificity, and F1 score of 0.795, 0.735, 0.835, 0.75, and 0.782, respectively, outperforming existing research methods and balancing classification performance and privacy security, making it suitable for IoV computation and analysis of private data.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00623-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid growth of Internet of Vehicles (IoV) technology, the performance and privacy of IoV terminals (IoVT) have become increasingly important. This paper proposes a federated learning model for IoVT classification using connection records (FLM-ICR) to address privacy concerns and poor computational performance in analyzing users' private data in IoV. FLM-ICR, in the horizontally federated learning client-server architecture, utilizes an improved multi-layer perceptron and logistic regression network as the model backbone, employs the federated momentum gradient algorithm as the local model training optimizer, and uses the federated Gaussian differential privacy algorithm to protect the security of the computation process. The experiment evaluates the model's classification performance using the confusion matrix, explores the impact of client collaboration on model performance, demonstrates the model's suitability for imbalanced data distribution, and confirms the effectiveness of federated learning for model training. FLM-ICR achieves the accuracy, precision, recall, specificity, and F1 score of 0.795, 0.735, 0.835, 0.75, and 0.782, respectively, outperforming existing research methods and balancing classification performance and privacy security, making it suitable for IoV computation and analysis of private data.