Possible influence of Martian surface mineralogy on the detectability of atmospheric trace gases - mid-infrared simulation results

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
{"title":"Possible influence of Martian surface mineralogy on the detectability of atmospheric trace gases - mid-infrared simulation results","authors":"","doi":"10.1016/j.pss.2024.105877","DOIUrl":null,"url":null,"abstract":"<div><p>The paper focuses on the influence of the optical properties of Martian surface minerals on remotely detected gaseous components of the Martian atmosphere, when the spectrometer receives a combined signal from the Martian soil and atmosphere. Our considerations are primarily concerned with the detectability of methane, but the problem may also apply to other trace gases. Detections of methane in the Martian atmosphere have been reported from Mars Express (orbiting Mars), the Curiosity rover on the Martian surface, and from Earth. Its presence in the Martian atmosphere is being questioned today. The reason for these doubts is that both spectrometers onboard ExoMars Trace Gas Orbiter have not yet detected any methane in the Martian atmosphere using the very sensitive solar occultation method. The solar occultation method is unable to probe the lowest layers of the atmosphere at mid-latitudes, and so, its presence in this part of the atmosphere is assumed to be due to its possible source in the ground, as suggested by some works.</p><p>This paper considers whether the spectral characteristics of the soil may hinder the remote detection of methane. One of the examples discussed in the article relates to the possible observation of methane over mineralogical surfaces that may be the source of this gas. The examples of other surface mineralogical compositions are also discussed. The series of numerical simulations carried out in the region of the strong methane absorption band and the examples where the optical properties of the surface change the shape and contrast of this absorption band are shown. The codes used provide estimates of the spectral reflectance/emittance and total radiance of the Martian surface and atmosphere in the mid-infrared spectral region. The surface covered by dust was described by the reflectance and emittance calculated from n,k using Mie and Hapke theories or known from laboratory measurements. The different concentrations of atmospheric trace gases were taken into account.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"249 ","pages":"Article 105877"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000412","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper focuses on the influence of the optical properties of Martian surface minerals on remotely detected gaseous components of the Martian atmosphere, when the spectrometer receives a combined signal from the Martian soil and atmosphere. Our considerations are primarily concerned with the detectability of methane, but the problem may also apply to other trace gases. Detections of methane in the Martian atmosphere have been reported from Mars Express (orbiting Mars), the Curiosity rover on the Martian surface, and from Earth. Its presence in the Martian atmosphere is being questioned today. The reason for these doubts is that both spectrometers onboard ExoMars Trace Gas Orbiter have not yet detected any methane in the Martian atmosphere using the very sensitive solar occultation method. The solar occultation method is unable to probe the lowest layers of the atmosphere at mid-latitudes, and so, its presence in this part of the atmosphere is assumed to be due to its possible source in the ground, as suggested by some works.

This paper considers whether the spectral characteristics of the soil may hinder the remote detection of methane. One of the examples discussed in the article relates to the possible observation of methane over mineralogical surfaces that may be the source of this gas. The examples of other surface mineralogical compositions are also discussed. The series of numerical simulations carried out in the region of the strong methane absorption band and the examples where the optical properties of the surface change the shape and contrast of this absorption band are shown. The codes used provide estimates of the spectral reflectance/emittance and total radiance of the Martian surface and atmosphere in the mid-infrared spectral region. The surface covered by dust was described by the reflectance and emittance calculated from n,k using Mie and Hapke theories or known from laboratory measurements. The different concentrations of atmospheric trace gases were taken into account.

火星表面成分对中红外光谱中大气痕量气体光谱特征可见性的可能影响 - 模拟结果
本文的重点是当光谱仪接收到来自火星土壤和大气的综合信号时,火星表面矿物的光学特征对遥感探测到的火星大气气体成分的影响。我们首先考虑的是甲烷的可探测性,但这个问题也可能适用于其他痕量气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Planetary and Space Science
Planetary and Space Science 地学天文-天文与天体物理
CiteScore
5.40
自引率
4.20%
发文量
126
审稿时长
15 weeks
期刊介绍: Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered: • Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics • Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system • Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating • Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements • Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation • Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites • Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind • Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations • Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets • History of planetary and space research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信