Geometric characterization of the generalized Lommel–Wright function in the open unit disc

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hanaa M. Zayed, Teodor Bulboacă
{"title":"Geometric characterization of the generalized Lommel–Wright function in the open unit disc","authors":"Hanaa M. Zayed, Teodor Bulboacă","doi":"10.1186/s13660-024-03108-2","DOIUrl":null,"url":null,"abstract":"The present investigation aims to examine the geometric properties of the normalized form of the combination of generalized Lommel–Wright function $\\mathfrak{J}_{\\lambda ,\\mu}^{\\nu ,m}(z):=\\Gamma ^{m}(\\lambda +1) \\Gamma (\\lambda +\\mu +1)2^{2\\lambda +\\mu}z^{1-(\\nu /2)-\\lambda} \\mathcal{J}_{\\lambda ,\\mu }^{\\nu ,m}(\\sqrt{z})$ , where the function $\\mathcal{J}_{\\lambda ,\\mu}^{\\nu ,m}$ satisfies the differential equation $\\mathcal{J}_{\\lambda ,\\mu}^{\\nu ,m}(z):=(1-2\\lambda -\\nu )J_{ \\lambda ,\\mu}^{\\nu ,m}(z)+z (J_{\\lambda ,\\mu }^{\\nu ,m}(z) )^{\\prime}$ with $$ J_{\\nu ,\\lambda}^{\\mu ,m}(z)= \\biggl(\\frac{z}{2} \\biggr)^{2\\lambda + \\nu} \\sum_{k=0}^{\\infty} \\frac{(-1)^{k}}{\\Gamma ^{m} (k+\\lambda +1 )\\Gamma (k\\mu +\\nu +\\lambda +1 )} \\biggl(\\frac{z}{ 2} \\biggr)^{2k} $$ for $\\lambda \\in \\mathbb{C}\\setminus \\mathbb{Z}^{-}$ , $\\mathbb{Z}^{-}:= \\{ -1,-2,-3,\\ldots \\}$ , $m\\in \\mathbb{N}$ , $\\nu \\in \\mathbb{C}$ , and $\\mu \\in \\mathbb{N}_{0}:=\\mathbb{N}\\cup \\{0\\}$ . In particular, we employ a new procedure using mathematical induction, as well as an estimate for the upper and lower bounds for the gamma function inspired by Li and Chen (J. Inequal. Pure Appl. Math. 8(1):28, 2007), to evaluate the starlikeness and convexity of order α, $0\\leq \\alpha <1$ . Ultimately, we discuss the starlikeness and convexity of order zero for $\\mathfrak{J}_{\\lambda ,\\mu} ^{\\nu ,m}$ , and it turns out that they are useful to extend the range of validity for the parameter λ to $\\lambda \\geq 0$ where the main concept of the proofs comes from some technical manipulations given by Mocanu (Libertas Math. 13:27–40, 1993). Our results improve, complement, and generalize some well-known (nonsharp) estimates.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03108-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present investigation aims to examine the geometric properties of the normalized form of the combination of generalized Lommel–Wright function $\mathfrak{J}_{\lambda ,\mu}^{\nu ,m}(z):=\Gamma ^{m}(\lambda +1) \Gamma (\lambda +\mu +1)2^{2\lambda +\mu}z^{1-(\nu /2)-\lambda} \mathcal{J}_{\lambda ,\mu }^{\nu ,m}(\sqrt{z})$ , where the function $\mathcal{J}_{\lambda ,\mu}^{\nu ,m}$ satisfies the differential equation $\mathcal{J}_{\lambda ,\mu}^{\nu ,m}(z):=(1-2\lambda -\nu )J_{ \lambda ,\mu}^{\nu ,m}(z)+z (J_{\lambda ,\mu }^{\nu ,m}(z) )^{\prime}$ with $$ J_{\nu ,\lambda}^{\mu ,m}(z)= \biggl(\frac{z}{2} \biggr)^{2\lambda + \nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma ^{m} (k+\lambda +1 )\Gamma (k\mu +\nu +\lambda +1 )} \biggl(\frac{z}{ 2} \biggr)^{2k} $$ for $\lambda \in \mathbb{C}\setminus \mathbb{Z}^{-}$ , $\mathbb{Z}^{-}:= \{ -1,-2,-3,\ldots \}$ , $m\in \mathbb{N}$ , $\nu \in \mathbb{C}$ , and $\mu \in \mathbb{N}_{0}:=\mathbb{N}\cup \{0\}$ . In particular, we employ a new procedure using mathematical induction, as well as an estimate for the upper and lower bounds for the gamma function inspired by Li and Chen (J. Inequal. Pure Appl. Math. 8(1):28, 2007), to evaluate the starlikeness and convexity of order α, $0\leq \alpha <1$ . Ultimately, we discuss the starlikeness and convexity of order zero for $\mathfrak{J}_{\lambda ,\mu} ^{\nu ,m}$ , and it turns out that they are useful to extend the range of validity for the parameter λ to $\lambda \geq 0$ where the main concept of the proofs comes from some technical manipulations given by Mocanu (Libertas Math. 13:27–40, 1993). Our results improve, complement, and generalize some well-known (nonsharp) estimates.
开放单位圆盘中广义洛梅尔-赖特函数的几何特征
本研究旨在考察广义洛梅尔-赖特函数 $\mathfrak{J}_{\lambda ,\mu}^\{nu ,m}(z) 的归一化组合形式的几何特性:=Gamma ^{m}(\lambda +1) \Gamma (\lambda +\mu +1)2^{2\lambda +\mu}z^{1-(\nu /2)-\lambda} \mathcal{J}_{\lambda ,\mu }^{\nu ,m}(\sqrt{z})$ 、其中函数 $\mathcal{J}_{\lambda ,\mu}^{\nu ,m}$ 满足微分方程 $\mathcal{J}_{\lambda ,\mu}^{\nu ,m}(z):=(1-2\lambda -\nu )J_{ \lambda ,\mu}^{\nu ,m}(z)+z (J_{\lambda ,\mu }^{\nu ,m}(z) )^{prime}$ 其中 $$ J_{\nu ,\lambda}^{\mu ,m}(z)= \biggl(\frac{z}{2} \biggr)^{2\lambda + \nu} \sum_{k=0}^{/infty}\frac{(-1)^{k}}{Gamma ^{m} (k+\lambda +1 )\Gamma (k\mu +\nu +\lambda +1 )} \biggl(\frac{z}{ 2} \biggr)^{2k}$$ for $\lambda \in \mathbb{C}\setminus \mathbb{Z}^{-}$ , $\mathbb{Z}^{-}:= \{ -1,-2,-3,\ldots \}$ , $m\in \mathbb{N}$ , $\nu \in \mathbb{C}$ , and $\mu \in \mathbb{N}_{0}:=\mathbb{N}\cup \{0\}$ 。特别是,我们使用了一种新的数学归纳法,以及受 Li 和 Chen (J. Inequal.Pure Appl.8(1):28, 2007)的启发,评估阶 α 的星形性和凸性,$0leq \alpha <1$ 。最终,我们讨论了 $\mathfrak{J}_{\lambda ,\mu} ^{\nu ,m}$ 的零阶星性和凸性,结果发现它们有助于将参数 λ 的有效范围扩展到 $\lambda \geq 0$,其中证明的主要概念来自莫卡努(Libertas Math. 13:27-40, 1993)给出的一些技术操作。我们的结果改进、补充和概括了一些著名的(非锐利)估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信