On the Connes–Kasparov isomorphism, I

IF 1.8 3区 数学 Q1 MATHEMATICS
Pierre Clare, Nigel Higson, Yanli Song, Xiang Tang
{"title":"On the Connes–Kasparov isomorphism, I","authors":"Pierre Clare, Nigel Higson, Yanli Song, Xiang Tang","doi":"10.1007/s11537-024-2220-2","DOIUrl":null,"url":null,"abstract":"<p>This is the first of two papers dedicated to the detailed determination of the reduced C*-algebra of a connected, linear, real reductive group up to Morita equivalence, and a new and very explicit proof of the Connes–Kasparov conjecture for these groups using representation theory. In this part we shall give details of the C*-algebraic Morita equivalence and then explain how the Connes–Kasparov morphism in operator <i>K</i>-theory may be computed using what we call the Matching Theorem, which is a purely representation-theoretic result. We shall prove our Matching Theorem in the sequel, and indeed go further by giving a simple, direct construction of the components of the tempered dual that have non-trivial <i>K</i>-theory using David Vogan’s approach to the classification of the tempered dual.</p>","PeriodicalId":54908,"journal":{"name":"Japanese Journal of Mathematics","volume":"36 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11537-024-2220-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This is the first of two papers dedicated to the detailed determination of the reduced C*-algebra of a connected, linear, real reductive group up to Morita equivalence, and a new and very explicit proof of the Connes–Kasparov conjecture for these groups using representation theory. In this part we shall give details of the C*-algebraic Morita equivalence and then explain how the Connes–Kasparov morphism in operator K-theory may be computed using what we call the Matching Theorem, which is a purely representation-theoretic result. We shall prove our Matching Theorem in the sequel, and indeed go further by giving a simple, direct construction of the components of the tempered dual that have non-trivial K-theory using David Vogan’s approach to the classification of the tempered dual.

关于康涅斯-卡斯帕罗夫同构,I
本文是两篇论文中的第一篇,致力于详细确定连通、线性、实还原群的还原 C* 代数,直至莫里塔等价性,并利用表示论对这些群的康内斯-卡斯帕罗夫猜想进行新的、非常明确的证明。在这一部分中,我们将详细介绍 C* 代数莫里塔等价性,然后解释如何利用我们称之为匹配定理的纯粹表示论结果来计算算子 K 理论中的康内斯-卡斯帕罗夫态。我们将在续集中证明我们的匹配定理,实际上,我们将更进一步,利用大卫-沃根(David Vogan)对有节对偶的分类方法,对有节对偶中具有非三维 K 理论的成分进行简单、直接的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: The official journal of the Mathematical Society of Japan, the Japanese Journal of Mathematics is devoted to authoritative research survey articles that will promote future progress in mathematics. It encourages advanced and clear expositions, giving new insights on topics of current interest from broad perspectives and/or reviewing all major developments in an important area over many years. An eminent international mathematics journal, the Japanese Journal of Mathematics has been published since 1924. It is an ideal resource for a wide range of mathematicians extending beyond a small circle of specialists. The official journal of the Mathematical Society of Japan. Devoted to authoritative research survey articles that will promote future progress in mathematics. Gives new insight on topics of current interest from broad perspectives and/or reviews all major developments in an important area over many years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信