Alessandro Dotto, Matteo Luzzi, Jacopo Verdoya, Daniele Simoni, Ardeshir Hanifi, Jan Oscar Pralits
{"title":"Stability of low-pressure turbine boundary layers under variable Reynolds number and pressure gradient","authors":"Alessandro Dotto, Matteo Luzzi, Jacopo Verdoya, Daniele Simoni, Ardeshir Hanifi, Jan Oscar Pralits","doi":"10.1063/5.0188024","DOIUrl":null,"url":null,"abstract":"The free-stream turbulence induced transition occurring under typical low-pressure turbine flow conditions is investigated by comparing linear stability theory with wind tunnel measurements acquired over a flat plate subjected to high turbulence intensity. The analysis was carried out, accounting for three different Reynolds numbers and four different adverse pressure gradients. First, a non-similarity-based boundary layer (BL) solver was used to compute base flows and validated against pressure taps and particle image velocimetry (PIV) measurements. Successively, the optimal disturbances and their spatial transient growth were calculated by coupling classical linear stability theory and a direct-adjoint optimization procedure on all flow conditions considered. Linear stability results were compared with experimental particle image velocimetry measurements on both wall-normal and wall-parallel planes. Finally, the sensitivity of the disturbance spatial transient growth to the spanwise wavenumber of perturbations, the receptivity position, and the location where disturbance energy is maximized were investigated via the built numerical model. Overall, the optimal perturbations computed by linear stability theory show good agreement with the streaky structures surveyed in experiments. Interestingly, the energy growth of disturbances was found to be maximum for all the flow conditions examined, when perturbations entered the boundary layer close to the position where minimum pressure occurs.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"148 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0188024","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The free-stream turbulence induced transition occurring under typical low-pressure turbine flow conditions is investigated by comparing linear stability theory with wind tunnel measurements acquired over a flat plate subjected to high turbulence intensity. The analysis was carried out, accounting for three different Reynolds numbers and four different adverse pressure gradients. First, a non-similarity-based boundary layer (BL) solver was used to compute base flows and validated against pressure taps and particle image velocimetry (PIV) measurements. Successively, the optimal disturbances and their spatial transient growth were calculated by coupling classical linear stability theory and a direct-adjoint optimization procedure on all flow conditions considered. Linear stability results were compared with experimental particle image velocimetry measurements on both wall-normal and wall-parallel planes. Finally, the sensitivity of the disturbance spatial transient growth to the spanwise wavenumber of perturbations, the receptivity position, and the location where disturbance energy is maximized were investigated via the built numerical model. Overall, the optimal perturbations computed by linear stability theory show good agreement with the streaky structures surveyed in experiments. Interestingly, the energy growth of disturbances was found to be maximum for all the flow conditions examined, when perturbations entered the boundary layer close to the position where minimum pressure occurs.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves