G. Bonnet, F. E. Apen, M. Soret, J. Noël, B. Caron, D. Ninkabou, P. Zverev, D. Deldicque
{"title":"Seamount Subduction Dynamics and Long-Term Evolution of the Franciscan Active Margin","authors":"G. Bonnet, F. E. Apen, M. Soret, J. Noël, B. Caron, D. Ninkabou, P. Zverev, D. Deldicque","doi":"10.1029/2023tc008084","DOIUrl":null,"url":null,"abstract":"The Snow Mountain Volcanic Complex (SMVC; northern California, USA) is a well-preserved example of a coherently-exhumed subducted seamount. This study reappraises the genesis and evolution of this complex and surrounding units through detailed field, petro-structural and geochronological analyses. This work demonstrates that the SMVC (a) erupted at ∼166 Ma as a hotspot volcano on the Farallon Plate, (b) entered the Franciscan subduction trench at ∼118 Ma, and (c) was subsequently subducted to a depth of ∼20 km (within the seismogenic zone), as shown by local blueschist-facies assemblages formed at 0.6 GPa, 240°C. Transient subduction interfaces are preserved above, within, and below the SMVC, making it an exceptional target to study seamount subduction dynamics. Like other seamounts, the subduction-related deformation was mainly accommodated along kilometer-scale internal thrust zones lubricated by serpentinite/metasediments, and within centimeter-thick crack-seal veins recording pulsed fluid flow near peak metamorphism. No unequivocal proof of seismic activity was found. The integration of other seamounts (some potentially belonging to a former seamount chain) in the Franciscan Complex suggests that exhumed seamounts are more abundant than previously thought. Moreover, pressure-temperature-time estimates of subduction metamorphism for the surrounding units, combined with previous work constrain the thermal maturation of the subduction zone through time and the in-sequence emplacement of the SMVC. Rapid changes in age of the subducted oceanic plate when subducted additionally hint to the subduction of large-offset transform faults on the former Farallon plate. Such a process might have been linked to changes in accretion dynamics and magmatic flare-ups in the arc.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023tc008084","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Snow Mountain Volcanic Complex (SMVC; northern California, USA) is a well-preserved example of a coherently-exhumed subducted seamount. This study reappraises the genesis and evolution of this complex and surrounding units through detailed field, petro-structural and geochronological analyses. This work demonstrates that the SMVC (a) erupted at ∼166 Ma as a hotspot volcano on the Farallon Plate, (b) entered the Franciscan subduction trench at ∼118 Ma, and (c) was subsequently subducted to a depth of ∼20 km (within the seismogenic zone), as shown by local blueschist-facies assemblages formed at 0.6 GPa, 240°C. Transient subduction interfaces are preserved above, within, and below the SMVC, making it an exceptional target to study seamount subduction dynamics. Like other seamounts, the subduction-related deformation was mainly accommodated along kilometer-scale internal thrust zones lubricated by serpentinite/metasediments, and within centimeter-thick crack-seal veins recording pulsed fluid flow near peak metamorphism. No unequivocal proof of seismic activity was found. The integration of other seamounts (some potentially belonging to a former seamount chain) in the Franciscan Complex suggests that exhumed seamounts are more abundant than previously thought. Moreover, pressure-temperature-time estimates of subduction metamorphism for the surrounding units, combined with previous work constrain the thermal maturation of the subduction zone through time and the in-sequence emplacement of the SMVC. Rapid changes in age of the subducted oceanic plate when subducted additionally hint to the subduction of large-offset transform faults on the former Farallon plate. Such a process might have been linked to changes in accretion dynamics and magmatic flare-ups in the arc.
期刊介绍:
Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.