Local Cohomology of Modular Invariant Rings

Pub Date : 2024-03-13 DOI:10.1007/s00031-024-09851-6
Kriti Goel, Jack Jeffries, Anurag K. Singh
{"title":"Local Cohomology of Modular Invariant Rings","authors":"Kriti Goel, Jack Jeffries, Anurag K. Singh","doi":"10.1007/s00031-024-09851-6","DOIUrl":null,"url":null,"abstract":"<p>For <i>K</i> a field, consider a finite subgroup <i>G</i> of <span>\\({\\text {GL}}_n(K)\\)</span> with its natural action on the polynomial ring <span>\\(R:= K[x_1,\\dots ,x_n]\\)</span>. Let <span>\\(\\mathfrak {n}\\)</span> denote the homogeneous maximal ideal of the ring of invariants <span>\\(R^G\\)</span>. We study how the local cohomology module <span>\\(H^n_{\\mathfrak {n}}(R^G)\\)</span> compares with <span>\\(H^n_{\\mathfrak {n}}(R)^G\\)</span>. Various results on the <i>a</i>-invariant and on the Hilbert series of <span>\\(H^n_\\mathfrak {n}(R^G)\\)</span> are obtained as a consequence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09851-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For K a field, consider a finite subgroup G of \({\text {GL}}_n(K)\) with its natural action on the polynomial ring \(R:= K[x_1,\dots ,x_n]\). Let \(\mathfrak {n}\) denote the homogeneous maximal ideal of the ring of invariants \(R^G\). We study how the local cohomology module \(H^n_{\mathfrak {n}}(R^G)\) compares with \(H^n_{\mathfrak {n}}(R)^G\). Various results on the a-invariant and on the Hilbert series of \(H^n_\mathfrak {n}(R^G)\) are obtained as a consequence.

分享
查看原文
模块不变环的局部同调
对于 K 这个域,考虑 G 的有限子群({\text {GL}}_n(K)\)及其在多项式环 \(R:=K[x_1,\dots ,x_n]\)上的自然作用。让 \(\mathfrak {n}\) 表示不变式环 \(R^G\)的同质最大理想。我们将研究局部同调模块 \(H^n_{\mathfrak {n}}(R^G)\) 与 \(H^n_{\mathfrak {n}}(R)^G\) 的比较。结果得到了关于 \(H^n_\mathfrak {n}(R^G)\) 的 a-invariant 和 Hilbert 序列的各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信