Small field chaos in spin glasses: universal predictions from the ultrametric tree and comparison with numerical simulations

Miguel Aguilar-Janita, Silvio Franz, Victor Martin-Mayor, Javier Moreno-Gordo, Giorgio Parisi, Federico Ricci-Tersenghi, Juan J. Ruiz-Lorenzo
{"title":"Small field chaos in spin glasses: universal predictions from the ultrametric tree and comparison with numerical simulations","authors":"Miguel Aguilar-Janita, Silvio Franz, Victor Martin-Mayor, Javier Moreno-Gordo, Giorgio Parisi, Federico Ricci-Tersenghi, Juan J. Ruiz-Lorenzo","doi":"arxiv-2403.08503","DOIUrl":null,"url":null,"abstract":"We study the chaotic behavior of the Gibbs state of spin-glasses under the\napplication of an external magnetic field, in the crossover region where the\nfield intensity scales proportional to $1/\\sqrt{N}$, being $N$ the system size.\nWe show that Replica Symmetry Breaking (RSB) theory provides universal\npredictions for chaotic behavior: they depend only on the zero-field overlap\nprobability function $P(q)$ and are independent of other features of the\nsystem. Using solely $P(q)$ as input we can analytically predict quantitatively\nthe statistics of the states in a small field. In the infinite volume limit,\neach spin-glass sample is characterized by an infinite number of states that\nhave a tree-like structure. We generate the corresponding probability\ndistribution through efficient sampling using a representation based on the\nBolthausen-Snitmann coalescent. In this way, we can compute quantitatively\nproperties in the presence of a magnetic field in the crossover region, the\noverlap probability distribution in the presence of a small field and the\ndegree of decorrelation as the field is increased. To test our computations, we\nhave simulated the Bethe lattice spin glass and the 4D Edwards-Anderson model,\nfinding in both cases excellent agreement with the universal predictions.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.08503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the chaotic behavior of the Gibbs state of spin-glasses under the application of an external magnetic field, in the crossover region where the field intensity scales proportional to $1/\sqrt{N}$, being $N$ the system size. We show that Replica Symmetry Breaking (RSB) theory provides universal predictions for chaotic behavior: they depend only on the zero-field overlap probability function $P(q)$ and are independent of other features of the system. Using solely $P(q)$ as input we can analytically predict quantitatively the statistics of the states in a small field. In the infinite volume limit, each spin-glass sample is characterized by an infinite number of states that have a tree-like structure. We generate the corresponding probability distribution through efficient sampling using a representation based on the Bolthausen-Snitmann coalescent. In this way, we can compute quantitatively properties in the presence of a magnetic field in the crossover region, the overlap probability distribution in the presence of a small field and the degree of decorrelation as the field is increased. To test our computations, we have simulated the Bethe lattice spin glass and the 4D Edwards-Anderson model, finding in both cases excellent agreement with the universal predictions.
自旋玻璃中的小场混沌:超计量树的普遍预测以及与数值模拟的比较
我们研究了自旋玻璃在外加磁场作用下的吉布斯态的混沌行为,在交叉区域,磁场强度的尺度与1/\sqrt{N}$($N$为系统大小)成正比。我们的研究表明,复制对称性破坏(RSB)理论提供了混沌行为的普遍预测:它们只依赖于零磁场重叠概率函数$P(q)$,而与系统的其他特征无关。仅使用$P(q)$作为输入,我们就能定量地分析预测小场中的状态统计。在无限体积极限中,每个自旋玻璃样品都有无数个具有树状结构的状态。我们使用基于波尔索森-斯尼特曼凝聚的表示方法,通过高效采样生成相应的概率分布。通过这种方法,我们可以定量计算交叉区域存在磁场时的特性、存在小磁场时的重叠概率分布以及随着磁场增大的去相关度。为了检验我们的计算结果,我们模拟了贝特晶格自旋玻璃和 4D 爱德华-安德森模型,发现这两种情况都与普遍预测非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信