Investigating the effect of Zr content on electrochemical and tribological properties of newly developed near β-type Ti-alloys (Ti–25Nb-xZr) for biomedical applications
IF 6.7 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Investigating the effect of Zr content on electrochemical and tribological properties of newly developed near β-type Ti-alloys (Ti–25Nb-xZr) for biomedical applications","authors":"Mamoun Fellah , Naouel Hezil , Dikra Bouras , Nabila Bouchareb , Alejandro Perez Larios , Aleksei Obrosov , Gamal A. El-Hiti , Sabine Weiß","doi":"10.1016/j.jsamd.2024.100695","DOIUrl":null,"url":null,"abstract":"<div><p>In order to create alloys with exceptional properties for orthopedic uses, this study focuses on the impact of zirconium (Zr) content on the structural, electrochemical, and tribological qualities of nanostructured Ti–25Nb-xZr [x = 5, 10, 15, 20, 25, and 30 atomic (at.) %] alloys. The structural evolution was investigated using XRD and SEM techniques. The mechanical characteristics of the produced alloys, including Vickers hardness and Young's modulus, were measured. In addition, the corrosion tests were performed using the OCP, EIS, and PD methods in Ringer's solution within the independent pH range at 37 °C. A ball-on-disc tribometer was used to investigate the tribological behavior of the alloys under various loads and wet conditions using the Ringer solution. It has been verified that Zr content (at. %) in the alloys had an impact on their morphologies, structural evolution, and mechanical characteristics. According to the morphological analysis, the particle and crystallite size decreases with increasing Zr content. Young's modulus and Vickers hardness show the same tendency. The EIS data demonstrated that a single passive film formed on the alloy surfaces, and the addition of Zr enhanced the corrosion resistance of the passive films. The polarization curves demonstrate that the alloys had low corrosion current densities and large passive areas without the passive films disintegrating. Likewise, the inclusion of Zr resulted in a reduction in the corrosion and passive current density values. All of these results suggested that the titanium alloys exhibit a more noble electrochemical activity caused by Zr. From the tribological perspective, it was found that the friction coefficient of the alloys reduced with increasing Zr content.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 2","pages":"Article 100695"},"PeriodicalIF":6.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000261/pdfft?md5=7547ea2db7003e0a8f531277006ffaa3&pid=1-s2.0-S2468217924000261-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000261","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to create alloys with exceptional properties for orthopedic uses, this study focuses on the impact of zirconium (Zr) content on the structural, electrochemical, and tribological qualities of nanostructured Ti–25Nb-xZr [x = 5, 10, 15, 20, 25, and 30 atomic (at.) %] alloys. The structural evolution was investigated using XRD and SEM techniques. The mechanical characteristics of the produced alloys, including Vickers hardness and Young's modulus, were measured. In addition, the corrosion tests were performed using the OCP, EIS, and PD methods in Ringer's solution within the independent pH range at 37 °C. A ball-on-disc tribometer was used to investigate the tribological behavior of the alloys under various loads and wet conditions using the Ringer solution. It has been verified that Zr content (at. %) in the alloys had an impact on their morphologies, structural evolution, and mechanical characteristics. According to the morphological analysis, the particle and crystallite size decreases with increasing Zr content. Young's modulus and Vickers hardness show the same tendency. The EIS data demonstrated that a single passive film formed on the alloy surfaces, and the addition of Zr enhanced the corrosion resistance of the passive films. The polarization curves demonstrate that the alloys had low corrosion current densities and large passive areas without the passive films disintegrating. Likewise, the inclusion of Zr resulted in a reduction in the corrosion and passive current density values. All of these results suggested that the titanium alloys exhibit a more noble electrochemical activity caused by Zr. From the tribological perspective, it was found that the friction coefficient of the alloys reduced with increasing Zr content.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.