Stress memory in crops: what we have learned so far

IF 2.2 4区 生物学 Q2 PLANT SCIENCES
Maria D. Pissolato, Tamires S. Martins, Yutcelia C. G. Fajardo, Gustavo M. Souza, Eduardo C. Machado, Rafael V. Ribeiro
{"title":"Stress memory in crops: what we have learned so far","authors":"Maria D. Pissolato, Tamires S. Martins, Yutcelia C. G. Fajardo, Gustavo M. Souza, Eduardo C. Machado, Rafael V. Ribeiro","doi":"10.1007/s40626-024-00315-6","DOIUrl":null,"url":null,"abstract":"<p>Abiotic stresses are among the primary environmental variables that have consistently posed challenges to agricultural production worldwide. In the last decades, our understanding of how plants sense environmental cues has greatly expanded. This encompasses the mechanisms that convert environmental stress signals into cellular signaling pathways and gene transcription networks. Moreover, emerging evidence indicates that plants have the capacity to retain memories of past stressful experiences and use such capacity to enhance their responses under recurrent stresses. Priming, through prior exposure to a triggering factor, improves plant tolerance to subsequent biotic or abiotic stresses and has been proposed as the basis for plant stress memory. Priming-induced stress memory can persist in the current generation or even in the progeny. The significance of stress memory in enhancing abiotic stress tolerance is well-established in several important crops, and the capacity of plants to retain stress-related memories has been linked to diverse plant mechanisms. In this review, we revisit the recent literature reporting the mechanistic underpinnings of abiotic stress memory in important crops. We outline the underlying processes related to acquisition of stress memory, occurring at molecular, physiological, biochemical, and morphological levels. Here, we addressed the methods for studying plant memory over the last ten years, giving special attention to growth conditions, phenological stages and the techniques for inducing crop memory. Enhancing our comprehension of stress memory-related mechanisms would open up a range of possibilities for developing stress-resistant genotypes through molecular breeding or biotechnological methods or even stress-resistant crop fields due to improved management practices.</p>","PeriodicalId":23038,"journal":{"name":"Theoretical and Experimental Plant Physiology","volume":"18 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Experimental Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40626-024-00315-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abiotic stresses are among the primary environmental variables that have consistently posed challenges to agricultural production worldwide. In the last decades, our understanding of how plants sense environmental cues has greatly expanded. This encompasses the mechanisms that convert environmental stress signals into cellular signaling pathways and gene transcription networks. Moreover, emerging evidence indicates that plants have the capacity to retain memories of past stressful experiences and use such capacity to enhance their responses under recurrent stresses. Priming, through prior exposure to a triggering factor, improves plant tolerance to subsequent biotic or abiotic stresses and has been proposed as the basis for plant stress memory. Priming-induced stress memory can persist in the current generation or even in the progeny. The significance of stress memory in enhancing abiotic stress tolerance is well-established in several important crops, and the capacity of plants to retain stress-related memories has been linked to diverse plant mechanisms. In this review, we revisit the recent literature reporting the mechanistic underpinnings of abiotic stress memory in important crops. We outline the underlying processes related to acquisition of stress memory, occurring at molecular, physiological, biochemical, and morphological levels. Here, we addressed the methods for studying plant memory over the last ten years, giving special attention to growth conditions, phenological stages and the techniques for inducing crop memory. Enhancing our comprehension of stress memory-related mechanisms would open up a range of possibilities for developing stress-resistant genotypes through molecular breeding or biotechnological methods or even stress-resistant crop fields due to improved management practices.

Abstract Image

农作物的压力记忆:我们目前的收获
非生物胁迫是一直对全球农业生产构成挑战的主要环境变量之一。在过去几十年中,我们对植物如何感知环境线索的认识有了很大的提高。这包括将环境胁迫信号转化为细胞信号通路和基因转录网络的机制。此外,新出现的证据表明,植物有能力保留对过去胁迫经历的记忆,并利用这种能力来增强它们在反复胁迫下的反应。通过事先暴露于触发因子,"诱导"(Priming)可提高植物对后续生物或非生物胁迫的耐受性,因此被认为是植物胁迫记忆的基础。引物诱导的胁迫记忆可在当前一代甚至后代中持续存在。胁迫记忆在增强非生物胁迫耐受性方面的重要性已在几种重要作物中得到证实,植物保留胁迫相关记忆的能力与多种植物机制有关。在本综述中,我们重温了近期报道重要作物非生物胁迫记忆机理基础的文献。我们概述了与获得胁迫记忆有关的基本过程,这些过程发生在分子、生理、生化和形态学层面。在此,我们讨论了过去十年中研究植物记忆的方法,特别关注生长条件、物候期和诱导作物记忆的技术。加强我们对胁迫记忆相关机制的理解,将为通过分子育种或生物技术方法开发抗胁迫基因型,甚至通过改进管理方法开发抗胁迫作物田提供一系列可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
7.70%
发文量
32
期刊介绍: The journal does not publish articles in taxonomy, anatomy, systematics and ecology unless they have a physiological approach related to the following sections: Biochemical Processes: primary and secondary metabolism, and biochemistry; Photobiology and Photosynthesis Processes; Cell Biology; Genes and Development; Plant Molecular Biology; Signaling and Response; Plant Nutrition; Growth and Differentiation: seed physiology, hormonal physiology and photomorphogenesis; Post-Harvest Physiology; Ecophysiology/Crop Physiology and Stress Physiology; Applied Plant Ecology; Plant-Microbe and Plant-Insect Interactions; Instrumentation in Plant Physiology; Education in Plant Physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信