Production-related effects on the adhesive bondline performance of structural adhesives joining dissimilar materials

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M Griese, E Stammen, K Dilger
{"title":"Production-related effects on the adhesive bondline performance of structural adhesives joining dissimilar materials","authors":"M Griese, E Stammen, K Dilger","doi":"10.1177/14644207241239294","DOIUrl":null,"url":null,"abstract":"Adhesive bonding is a commonly used technology for joining dissimilar materials. However, production-related effects on the performance of the bondline have to be considered for an accurate joint design. In case of an adhesive joint in an automotive multi-material body in white, these effects arise from the so-called mismatch in thermal expansion coefficients, which leads to distortions of the adhesive in an uncured state or even damage in the cured one. The distortion of the uncured adhesive in the normal direction is called the ‘viscous fingering effect’, which reduces the adhesively bonded cross section by changing the adhesive bondline's shape to thin ‘fingers’ and therefore influences the materials properties. To investigate the effect of viscous fingering on the modulus, strength and energy release rate, linear butt bonded specimens and Tapered Double Cantilever Beams (TDCB) with different elongations of the adhesive bondline in the viscous state are investigated. The results are used to parameterize a cohesive zone model (CZM) and perform numerical analysis of the TDCB specimen for validation and to build up a model of a dissimilar joint consisting of a steel hatprofile and an adhesively bonded aluminum panel subjected to thermal distortions.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241239294","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Adhesive bonding is a commonly used technology for joining dissimilar materials. However, production-related effects on the performance of the bondline have to be considered for an accurate joint design. In case of an adhesive joint in an automotive multi-material body in white, these effects arise from the so-called mismatch in thermal expansion coefficients, which leads to distortions of the adhesive in an uncured state or even damage in the cured one. The distortion of the uncured adhesive in the normal direction is called the ‘viscous fingering effect’, which reduces the adhesively bonded cross section by changing the adhesive bondline's shape to thin ‘fingers’ and therefore influences the materials properties. To investigate the effect of viscous fingering on the modulus, strength and energy release rate, linear butt bonded specimens and Tapered Double Cantilever Beams (TDCB) with different elongations of the adhesive bondline in the viscous state are investigated. The results are used to parameterize a cohesive zone model (CZM) and perform numerical analysis of the TDCB specimen for validation and to build up a model of a dissimilar joint consisting of a steel hatprofile and an adhesively bonded aluminum panel subjected to thermal distortions.
生产对连接异种材料的结构粘合剂粘合线性能的影响
粘合剂粘接是一种常用的异种材料连接技术。然而,要进行精确的连接设计,必须考虑生产对粘接线性能的影响。对于汽车白色多材料车身中的粘合接头,这些影响来自所谓的热膨胀系数不匹配,从而导致未固化状态下的粘合剂变形,甚至固化状态下的粘合剂损坏。未固化粘合剂在法线方向上的变形被称为 "粘性指状效应",它通过将粘合剂粘合线的形状改变为细长的 "手指 "来减小粘合截面,从而影响材料的性能。为了研究粘性指状效应对模量、强度和能量释放率的影响,我们对粘性状态下粘合剂粘合线具有不同伸长率的线性对接粘合试样和锥形双悬臂梁(TDCB)进行了研究。研究结果用于内聚区模型(CZM)的参数设置,并对 TDCB 试样进行数值分析以进行验证,同时还用于建立一个由钢帽型材和受热变形影响的粘合铝板组成的异种连接模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
8.30%
发文量
166
审稿时长
3 months
期刊介绍: The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers. "The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信