A note on generalized weakly ℋ-symmetric manifolds and relativistic applications

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Sameh Shenawy, Nasser Bin Turki, Carlo Mantica
{"title":"A note on generalized weakly ℋ-symmetric manifolds and relativistic applications","authors":"Sameh Shenawy, Nasser Bin Turki, Carlo Mantica","doi":"10.1142/s0219887824501536","DOIUrl":null,"url":null,"abstract":"<p>In this work, generalized weakly <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi></math></span><span></span>-symmetric space-times (GWHS)<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> are investigated, where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi></math></span><span></span> is any symmetric <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span> tensor. It is proved that, in a nontrivial (GWHS)<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> space-time, the tensor <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi></math></span><span></span> has a perfect fluid form. Accordingly, sufficient conditions for a nontrivial generalized weakly Ricci symmetric space-time (GWRS)<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> to be either an Einstein space-time or a perfect fluid space-time are obtained. Also, conditions for space-times admitting either a generalized weakly symmetric energy-momentum tensor or a generalized weakly symmetric <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">𝒵</mi></math></span><span></span> tensor to be Einstein or perfect fluid space-times are provided.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"9 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824501536","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, generalized weakly -symmetric space-times (GWHS)n are investigated, where is any symmetric (0,2) tensor. It is proved that, in a nontrivial (GWHS)n space-time, the tensor has a perfect fluid form. Accordingly, sufficient conditions for a nontrivial generalized weakly Ricci symmetric space-time (GWRS)n to be either an Einstein space-time or a perfect fluid space-time are obtained. Also, conditions for space-times admitting either a generalized weakly symmetric energy-momentum tensor or a generalized weakly symmetric 𝒵 tensor to be Einstein or perfect fluid space-times are provided.

关于广义弱ℋ对称流形和相对论应用的说明
本文研究了广义弱ℋ对称时空(GWHS)n,其中ℋ是任意对称(0,2)张量。研究证明,在非微观(GWHS)n 时空中,张量ℋ具有完美的流体形式。相应地,得到了非微观广义弱里奇对称时空(GWRS)n 成为爱因斯坦时空或完美流体时空的充分条件。此外,还提供了包含广义弱对称能动张量或广义弱对称𝒵张量的时空成为爱因斯坦时空或完美流体时空的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信