Introduction to loop quantum gravity. The Holst’s action and the covariant formalism

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
L. Fatibene, A. Orizzonte, A. Albano, S. Coriasco, M. Ferraris, S. Garruto, N. Morandi
{"title":"Introduction to loop quantum gravity. The Holst’s action and the covariant formalism","authors":"L. Fatibene, A. Orizzonte, A. Albano, S. Coriasco, M. Ferraris, S. Garruto, N. Morandi","doi":"10.1142/s0219887824400164","DOIUrl":null,"url":null,"abstract":"<p>We review Holst formalism and dynamical equivalence with standard GR (in dimension <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn></math></span><span></span>). Holst formalism is written for a spin coframe field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>e</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>I</mi></mrow></msubsup></math></span><span></span> and a Spin(3,1)-connection <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>ω</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>I</mi><mi>J</mi></mrow></msubsup></math></span><span></span> on spacetime <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> and it depends on the <i>Holst parameter</i><span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mo>∈</mo><mi>ℝ</mi><mo stretchy=\"false\">−</mo><mo stretchy=\"false\">{</mo><mn>0</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. We show the model is dynamically equivalent to standard GR, in the sense that up to a pointwise Spin(3,1)-gauge transformation acting on (uppercase Latin) frame indices, solutions of the two models are in one-to-one correspondence. Hence, the two models are classically equivalent. One can also introduce new variables by splitting the spin connection into a pair of a Spin(3)-connection <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msubsup></math></span><span></span> and a Spin(3)-valued 1-form <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>k</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msubsup></math></span><span></span>. The construction of these new variables relies on a particular algebraic structure, called a <i>reductive splitting</i>. A weaker structure than requiring that the gauge group splits as the products of two sub-groups, as it happens in Euclidean signature in the selfdual formulation originally introduced in this context by Ashtekar, and it still allows to deal with the Lorentzian signature without resorting to complexifications. The reductive splitting of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is not unique and it is parameterized by a real parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> which is called the <i>Immirzi parameter</i>. The splitting is here done <i>on spacetime</i>, not on space as it is usually done in the literature, to obtain a Spin(3)-connection <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msubsup></math></span><span></span>, which is called the <i>Barbero–Immirzi connection</i> on spacetime. One obtains a covariant model depending on the fields <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msubsup><mrow><mi>e</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>I</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>k</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msubsup><mo stretchy=\"false\">)</mo></math></span><span></span> which is again dynamically equivalent to standard GR. Usually in the literature one sets <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi><mo>=</mo><mi>γ</mi></math></span><span></span> for the sake of simplicity. Here, we keep the Holst and Immirzi parameters distinct to show that eventually only <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> will survive in boundary field equations.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"8 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824400164","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We review Holst formalism and dynamical equivalence with standard GR (in dimension 4). Holst formalism is written for a spin coframe field eμI and a Spin(3,1)-connection ωμIJ on spacetime M and it depends on the Holst parameterγ{0}. We show the model is dynamically equivalent to standard GR, in the sense that up to a pointwise Spin(3,1)-gauge transformation acting on (uppercase Latin) frame indices, solutions of the two models are in one-to-one correspondence. Hence, the two models are classically equivalent. One can also introduce new variables by splitting the spin connection into a pair of a Spin(3)-connection Aμi and a Spin(3)-valued 1-form kμi. The construction of these new variables relies on a particular algebraic structure, called a reductive splitting. A weaker structure than requiring that the gauge group splits as the products of two sub-groups, as it happens in Euclidean signature in the selfdual formulation originally introduced in this context by Ashtekar, and it still allows to deal with the Lorentzian signature without resorting to complexifications. The reductive splitting of SL(2,) is not unique and it is parameterized by a real parameter β which is called the Immirzi parameter. The splitting is here done on spacetime, not on space as it is usually done in the literature, to obtain a Spin(3)-connection Aμi, which is called the Barbero–Immirzi connection on spacetime. One obtains a covariant model depending on the fields (eμI,Aμi,kμi) which is again dynamically equivalent to standard GR. Usually in the literature one sets β=γ for the sake of simplicity. Here, we keep the Holst and Immirzi parameters distinct to show that eventually only β will survive in boundary field equations.

环量子引力入门。霍尔斯特作用和协变形式主义
我们回顾了霍尔斯特形式主义以及它与标准 GR(4 维)的动力学等价性。霍尔斯特形式主义是为时空M上的自旋共框场eμI和自旋(3,1)连接ωμIJ而写的,它取决于霍尔斯特参数γ∈ℝ-{0}。我们证明了这个模型在动力学上等同于标准GR,即在作用于(大写拉丁文)框架指数的点向Spin(3,1)-gauge变换之前,两个模型的解是一一对应的。因此,这两个模型在经典上是等价的。我们还可以通过将自旋连接拆分为一对自旋(3)连接 Aμi 和自旋(3)值 1-form kμi 来引入新变量。这些新变量的构建依赖于一种特殊的代数结构,即还原分裂。这种结构比要求轨距群分裂为两个子群的乘积要弱,因为在欧几里得签名中,阿什特卡尔(Ashtekar)最初在这种情况下提出了自偶公式。SL(2,ℂ)的还原分裂并不是唯一的,它是由一个实数参数β参数化的,这个参数被称为伊米尔兹参数。这里的分裂是在时空中进行的,而不是像文献中通常那样在空间上进行,从而得到一个 Spin(3)-connection Aμi,它被称为时空中的巴贝罗-伊米尔兹(Barbero-Immirzi)连接。我们可以得到一个取决于场(eμI,Aμi,kμi)的协变量模型,它在动力学上等同于标准 GR。为了简单起见,文献中通常设定 β=γ 。在这里,我们将霍尔斯特参数和伊米尔兹参数区分开来,以说明最终只有 β 会在边界场方程中存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信