Observation constraints on scalar field cosmological model in anisotropic universe

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Vinod Kumar Bhardwaj, Anil Kumar Yadav
{"title":"Observation constraints on scalar field cosmological model in anisotropic universe","authors":"Vinod Kumar Bhardwaj, Anil Kumar Yadav","doi":"10.1142/s0219887824501445","DOIUrl":null,"url":null,"abstract":"<p>In this study, we have explored a scalar field cosmological model in the axially symmetric Bianchi type-I universe. In this study, our aim is to constrain the scalar field dark energy model in an anisotropic background. For this purpose, the explicit solution of the developed field equations for the model is determined and analyzed. Constraints on the cosmological model parameters are established utilizing Markov Chain Monte Carlo (MCMC) analysis and using the latest observational datasets of OHD, BAO, and Pantheon. For the combined dataset (OHD, BAO, and Pantheon), the best-fit values of Hubble and density parameters are estimated as <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>7</mn><mn>1</mn><mo>.</mo><mn>5</mn><mn>4</mn><mo stretchy=\"false\">±</mo><mn>0</mn><mo>.</mo><mn>2</mn><mn>8</mn></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Ω</mi></mrow><mrow><mi>m</mi><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mn>6</mn><mn>2</mn><mn>2</mn><mo stretchy=\"false\">±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>2</mn><mn>1</mn></math></span><span></span><span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Ω</mi></mrow><mrow><mi>ϕ</mi><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn><mn>3</mn><mn>3</mn><mn>1</mn><mo stretchy=\"false\">±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>4</mn><mn>6</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Ω</mi></mrow><mrow><mi>σ</mi><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn><mn>6</mn><mn>2</mn><mo stretchy=\"false\">±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>0</mn><mn>6</mn><mn>3</mn></math></span><span></span>. The model shows a flipping nature and redshift transition occurs at <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn><mn>9</mn><mn>6</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo stretchy=\"false\">−</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>6</mn></mrow><mrow><mo stretchy=\"false\">+</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>1</mn><mn>3</mn><mn>6</mn></mrow></msubsup></math></span><span></span>, and the present value of decelerated parameter is computed to be <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo stretchy=\"false\">−</mo><mn>0</mn><mo>.</mo><mn>6</mn><mn>9</mn><mn>6</mn><mn>4</mn><mo stretchy=\"false\">±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>2</mn><mn>8</mn></math></span><span></span> for the combined dataset. We have explored characteristics like the universe’s age, particle horizon, deceleration parameter, and jerk parameter. The dynamical properties, such as energy density <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span><span></span>, scalar field pressure <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span><span></span>, and equation of state parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ω</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span><span></span>, are analyzed and presented. We have also described the behavior of the scalar potential <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>V</mi><mo stretchy=\"false\">(</mo><mi>ϕ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and scalar field. Furthermore, the authors also described the behavior of energy conditions in scalar-tensor cosmology. The scenario of the present accelerated expansion of the universe is described by the contribution of the scalar field.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"84 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824501445","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we have explored a scalar field cosmological model in the axially symmetric Bianchi type-I universe. In this study, our aim is to constrain the scalar field dark energy model in an anisotropic background. For this purpose, the explicit solution of the developed field equations for the model is determined and analyzed. Constraints on the cosmological model parameters are established utilizing Markov Chain Monte Carlo (MCMC) analysis and using the latest observational datasets of OHD, BAO, and Pantheon. For the combined dataset (OHD, BAO, and Pantheon), the best-fit values of Hubble and density parameters are estimated as H0=71.54±0.28, Ωm0=0.2622±0.0021Ωϕ0=0.7331±0.0046 and Ωσ0=0.000162±0.000063. The model shows a flipping nature and redshift transition occurs at zt=0.69640.0006+0.0136, and the present value of decelerated parameter is computed to be q0=0.6964±0.028 for the combined dataset. We have explored characteristics like the universe’s age, particle horizon, deceleration parameter, and jerk parameter. The dynamical properties, such as energy density ρϕ, scalar field pressure pϕ, and equation of state parameter ωϕ, are analyzed and presented. We have also described the behavior of the scalar potential V(ϕ) and scalar field. Furthermore, the authors also described the behavior of energy conditions in scalar-tensor cosmology. The scenario of the present accelerated expansion of the universe is described by the contribution of the scalar field.

各向异性宇宙中标量场宇宙学模型的观测约束
在这项研究中,我们探索了轴对称比安奇 I 型宇宙中的标量场宇宙学模型。在这项研究中,我们的目的是在各向异性背景下约束标量场暗能量模型。为此,我们确定并分析了模型场方程的显式解。利用马尔可夫链蒙特卡罗(MCMC)分析和最新的 OHD、BAO 和 Pantheon 观测数据集,建立了对宇宙学模型参数的约束。对于组合数据集(OHD、BAO 和 Pantheon),哈勃和密度参数的最佳拟合值估计为 H0=71.54±0.28,Ωm0=0.2622±0.0021Ωj0=0.7331±0.0046,Ωσ0=0.000162±0.000063。该模型具有翻转性质,红移转变发生在zt=0.6964-0.0006+0.0136,综合数据集计算出的减速参数现值为q0=-0.6964±0.028。我们探索了宇宙的年龄、粒子视界、减速参数和抽搐参数等特征。我们分析并展示了能量密度ρj、标量场压力pj和状态方程参数ωj等动力学特性。我们还描述了标量势 V(ϕ) 和标量场的行为。此外,作者还描述了标量张量宇宙学中能量条件的行为。标量场的贡献描述了目前宇宙加速膨胀的情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信