Deep-sea benthic structures and substrate types influence the distribution of functional groups in the Wallaby-Zenith Fracture Zone (East Indian Ocean)
Yakufu Niyazi , Todd Bond , Jessica L. Kolbusz , Paige J. Maroni , Heather A. Stewart , Alan J. Jamieson
{"title":"Deep-sea benthic structures and substrate types influence the distribution of functional groups in the Wallaby-Zenith Fracture Zone (East Indian Ocean)","authors":"Yakufu Niyazi , Todd Bond , Jessica L. Kolbusz , Paige J. Maroni , Heather A. Stewart , Alan J. Jamieson","doi":"10.1016/j.dsr.2024.104268","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional deep-sea structures enhance substrate complexity and can shape numerous ecological hotspots that play critical roles in the diversity and distribution of benthic faunal assemblages. The characteristics of these features are not fully understood due to the logistical challenges of exploring at great depths and remote locations. One such deep-sea feature, the Wallaby-Zenith Fracture Zone (WZFZ) located in the East Indian Ocean, was mapped using a full-ocean depth multibeam echosounder system. Additionally, twelve baited landers and five crewed submersible dives were conducted in water depths between 4709 and 6591 m. We use seafloor bathymetry, bathymetric derivatives and video footage from the submersible dives to characterise the benthic structures, substrate types, habitat diversity, and the distribution of associated functional groups of megafauna for the WZFZ. The Benthic Terrain Modeler toolbox was used as an initial semi-automated step to generate benthic structural classes, which were further characterized through the inclusion of bottom salinity and temperature data collected by the scientific landers and integrated with the observations of seafloor substrate from the submersible video footage. This resulted in identification of nine benthic habitat classes characterised by unique seafloor morphological structure and substrate texture. A polymetallic nodule field, a possible extension of the previously reported Cape Leeuwen nodule field, was also observed along submersible transects conducted on the slopes of the WZFZ. The distribution and diversity of the functional megafauna groups observed are influenced by the deep-sea benthic habitats, defined by seafloor structures and substrate heterogeneity, especially the presence of hard substrates such as outcropping bedrock and polymetallic nodules within the WZFZ.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724000384","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional deep-sea structures enhance substrate complexity and can shape numerous ecological hotspots that play critical roles in the diversity and distribution of benthic faunal assemblages. The characteristics of these features are not fully understood due to the logistical challenges of exploring at great depths and remote locations. One such deep-sea feature, the Wallaby-Zenith Fracture Zone (WZFZ) located in the East Indian Ocean, was mapped using a full-ocean depth multibeam echosounder system. Additionally, twelve baited landers and five crewed submersible dives were conducted in water depths between 4709 and 6591 m. We use seafloor bathymetry, bathymetric derivatives and video footage from the submersible dives to characterise the benthic structures, substrate types, habitat diversity, and the distribution of associated functional groups of megafauna for the WZFZ. The Benthic Terrain Modeler toolbox was used as an initial semi-automated step to generate benthic structural classes, which were further characterized through the inclusion of bottom salinity and temperature data collected by the scientific landers and integrated with the observations of seafloor substrate from the submersible video footage. This resulted in identification of nine benthic habitat classes characterised by unique seafloor morphological structure and substrate texture. A polymetallic nodule field, a possible extension of the previously reported Cape Leeuwen nodule field, was also observed along submersible transects conducted on the slopes of the WZFZ. The distribution and diversity of the functional megafauna groups observed are influenced by the deep-sea benthic habitats, defined by seafloor structures and substrate heterogeneity, especially the presence of hard substrates such as outcropping bedrock and polymetallic nodules within the WZFZ.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.