Investigation of longitudinal airflow characteristics in an aircraft cabin based on angle of attack

IF 3.2 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Zihan Xing, Yongzhi Zhang, Ping Wang, Jiaxing Zhang
{"title":"Investigation of longitudinal airflow characteristics in an aircraft cabin based on angle of attack","authors":"Zihan Xing, Yongzhi Zhang, Ping Wang, Jiaxing Zhang","doi":"10.1177/1420326x241237930","DOIUrl":null,"url":null,"abstract":"As an important means of transportation, an aircraft’s environmental control system plays an important role in ensuring the health and thermal comfort of the cabin environment. To guarantee sufficient lift during flight, the aircraft cabin needs to have a certain angle of attack with the horizontal direction. In this study, the flow field, temperature field and vortex structure characteristics of the cabin were analysed using a scaled 28-row cabin model and computational fluid dynamics (CFD) under different angles of attack (15° and 8°) conditions. The results show that the velocity and temperature in the local area in the longitudinal section were increased when the angle of attack was increased. Compared with the horizontal state (angle of attack 0°), the longitudinal airflow under the condition of a larger angle of attack was enhanced. The overall trend of forward airflow is presented in this paper. The longitudinal airflow would strengthen the separation of the large vortex at the top of the cabin. The vortex structure shows high instability in different times and spaces.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241237930","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As an important means of transportation, an aircraft’s environmental control system plays an important role in ensuring the health and thermal comfort of the cabin environment. To guarantee sufficient lift during flight, the aircraft cabin needs to have a certain angle of attack with the horizontal direction. In this study, the flow field, temperature field and vortex structure characteristics of the cabin were analysed using a scaled 28-row cabin model and computational fluid dynamics (CFD) under different angles of attack (15° and 8°) conditions. The results show that the velocity and temperature in the local area in the longitudinal section were increased when the angle of attack was increased. Compared with the horizontal state (angle of attack 0°), the longitudinal airflow under the condition of a larger angle of attack was enhanced. The overall trend of forward airflow is presented in this paper. The longitudinal airflow would strengthen the separation of the large vortex at the top of the cabin. The vortex structure shows high instability in different times and spaces.
基于攻角的飞机机舱纵向气流特性研究
作为一种重要的交通工具,飞机的环境控制系统在确保机舱环境的健康和热舒适性方面发挥着重要作用。为了保证飞行时有足够的升力,飞机客舱需要与水平方向有一定的夹角。在本研究中,使用按比例缩小的 28 排客舱模型和计算流体动力学(CFD)分析了不同攻角(15° 和 8°)条件下客舱的流场、温度场和涡流结构特征。结果表明,当攻角增大时,纵剖面局部区域的速度和温度都会增加。与水平状态(攻角 0°)相比,较大攻角条件下的纵向气流有所增强。本文介绍了前向气流的总体趋势。纵向气流将加强座舱顶部大涡旋的分离。涡流结构在不同的时间和空间表现出高度的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indoor and Built Environment
Indoor and Built Environment 环境科学-工程:环境
CiteScore
6.40
自引率
25.00%
发文量
130
审稿时长
2.6 months
期刊介绍: Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信