P. Peña-Obeso, M. E. Cervantes-Gaxiola, J. L. Rico, J. N. Díaz de León, S. Guevara-Martinez, J. A. Lumbreras-Pacheco, R. Huirache-Acuña
{"title":"Synthesis and Characterization of NiMoS/TiMg and NiWS/TiMg Nanocatalysts and Their Application in the Hydrodesulfurization of Dibenzothiophene","authors":"P. Peña-Obeso, M. E. Cervantes-Gaxiola, J. L. Rico, J. N. Díaz de León, S. Guevara-Martinez, J. A. Lumbreras-Pacheco, R. Huirache-Acuña","doi":"10.1007/s11244-024-01916-w","DOIUrl":null,"url":null,"abstract":"<p>NiMoS/TiMg and NiWS/TiMg nanocatalysts were synthesized, characterized by various techniques and tested in the hydrodesulphurization (HDS) of dibenzothiophene (DBT). TiMg mixed oxides containing 5, 10 or 15 wt% of MgO were prepared by sol–gel and then used as catalyst supports. A constant atomic ratio of Ni/(Ni + M) = 0.5 was kept for all the catalysts (M = Mo or W). The catalysts were first prepared by sequential-wet impregnation. Then, after an ex-situ sulfidation process, they were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and physisorption of N<sub>2</sub> following the BET method. The presence of MgO in the NiMoS/TiMg and NiWS/TiMg catalysts resulted in an enhancement in the HDS activity of DBT. In addition, their HDS activities were higher than those observed in the NiMoS/Ti and NiWS/Ti catalysts. Furthermore, higher HDS activity was found for the NiMoS/TiMg compared with their NiWS/TiMg catalysts counterpart.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"74 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01916-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
NiMoS/TiMg and NiWS/TiMg nanocatalysts were synthesized, characterized by various techniques and tested in the hydrodesulphurization (HDS) of dibenzothiophene (DBT). TiMg mixed oxides containing 5, 10 or 15 wt% of MgO were prepared by sol–gel and then used as catalyst supports. A constant atomic ratio of Ni/(Ni + M) = 0.5 was kept for all the catalysts (M = Mo or W). The catalysts were first prepared by sequential-wet impregnation. Then, after an ex-situ sulfidation process, they were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and physisorption of N2 following the BET method. The presence of MgO in the NiMoS/TiMg and NiWS/TiMg catalysts resulted in an enhancement in the HDS activity of DBT. In addition, their HDS activities were higher than those observed in the NiMoS/Ti and NiWS/Ti catalysts. Furthermore, higher HDS activity was found for the NiMoS/TiMg compared with their NiWS/TiMg catalysts counterpart.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.