{"title":"Quantile generalized measures of correlation","authors":"Xinyu Zhang, Hongwei Shi, Niwen Zhou, Falong Tan, Xu Guo","doi":"10.1007/s11222-024-10414-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a quantile Generalized Measure of Correlation (GMC) to describe nonlinear quantile relationship between response variable and predictors. The introduced correlation takes values between zero and one. It is zero if and only if the conditional quantile function is equal to the unconditional quantile. We also introduce a quantile partial Generalized Measure of Correlation. Estimators of these correlations are developed. Notably by adopting machine learning methods, our estimation procedures allow the dimension of predictors very large. Under mild conditions, we establish the estimators’ consistency. For construction of confidence interval, we adopt sample splitting and show that the corresponding estimators are asymptotic normal. We also consider composite quantile GMC by integrating information from different quantile levels. Numerical studies are conducted to illustrate our methods. Moreover, we apply our methods to analyze genome-wide association study data from Carworth Farms White mice.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10414-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a quantile Generalized Measure of Correlation (GMC) to describe nonlinear quantile relationship between response variable and predictors. The introduced correlation takes values between zero and one. It is zero if and only if the conditional quantile function is equal to the unconditional quantile. We also introduce a quantile partial Generalized Measure of Correlation. Estimators of these correlations are developed. Notably by adopting machine learning methods, our estimation procedures allow the dimension of predictors very large. Under mild conditions, we establish the estimators’ consistency. For construction of confidence interval, we adopt sample splitting and show that the corresponding estimators are asymptotic normal. We also consider composite quantile GMC by integrating information from different quantile levels. Numerical studies are conducted to illustrate our methods. Moreover, we apply our methods to analyze genome-wide association study data from Carworth Farms White mice.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.