Preserving Bifurcations through Moment Closures

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christian Kuehn, Jan Mölter
{"title":"Preserving Bifurcations through Moment Closures","authors":"Christian Kuehn, Jan Mölter","doi":"10.1137/23m158440x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 791-812, March 2024. <br/> Abstract.Moment systems arise in a wide range of contexts and applications, e.g., in network modeling of complex systems. Since moment systems consist of a high or even infinite number of coupled equations, an indispensable step in obtaining a low-dimensional representation that is amenable to further analysis is, in many cases, to select a moment closure. A moment closure consists of a set of approximations that express certain higher-order moments in terms of lower-order ones, so that applying those leads to a closed system of equations for only the lower-order moments. Closures are frequently found drawing on intuition and heuristics to come up with quantitatively good approximations. In contrast to that, we propose an alternative approach where we instead focus on closures giving rise to certain qualitative features, such as bifurcations. Importantly, this fundamental change of perspective provides one with the possibility of classifying moment closures rigorously in regard to these features. This makes the design and selection of closures more algorithmic, precise, and reliable. In this work, we carefully study the moment systems that arise in the mean-field descriptions of two widely known network dynamical systems, the SIS epidemic and the adaptive voter model. We derive conditions that any moment closure has to satisfy so that the corresponding closed systems exhibit the transcritical bifurcation that one expects in these systems coming from the stochastic particle model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m158440x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 791-812, March 2024.
Abstract.Moment systems arise in a wide range of contexts and applications, e.g., in network modeling of complex systems. Since moment systems consist of a high or even infinite number of coupled equations, an indispensable step in obtaining a low-dimensional representation that is amenable to further analysis is, in many cases, to select a moment closure. A moment closure consists of a set of approximations that express certain higher-order moments in terms of lower-order ones, so that applying those leads to a closed system of equations for only the lower-order moments. Closures are frequently found drawing on intuition and heuristics to come up with quantitatively good approximations. In contrast to that, we propose an alternative approach where we instead focus on closures giving rise to certain qualitative features, such as bifurcations. Importantly, this fundamental change of perspective provides one with the possibility of classifying moment closures rigorously in regard to these features. This makes the design and selection of closures more algorithmic, precise, and reliable. In this work, we carefully study the moment systems that arise in the mean-field descriptions of two widely known network dynamical systems, the SIS epidemic and the adaptive voter model. We derive conditions that any moment closure has to satisfy so that the corresponding closed systems exhibit the transcritical bifurcation that one expects in these systems coming from the stochastic particle model.
通过时刻闭合保护分岔
SIAM 应用动力系统期刊》第 23 卷第 1 期第 791-812 页,2024 年 3 月。 摘要.力矩系统出现在广泛的背景和应用中,例如复杂系统的网络建模。由于矩系统由大量甚至无限多的耦合方程组成,因此在很多情况下,要获得一个便于进一步分析的低维表示,必不可少的一步就是选择一个矩闭包。力矩闭包由一组近似值组成,这些近似值用低阶力矩来表示某些高阶力矩,因此应用这些近似值可以得到一个仅适用于低阶力矩的闭包方程组。闭包通常是通过直觉和启发式方法得出定量的良好近似值。与此相反,我们提出了另一种方法,即把重点放在产生某些定性特征(如分岔)的闭合上。重要的是,这种视角的根本性改变为我们提供了根据这些特征对矩闭合进行严格分类的可能性。这使得闭包的设计和选择更具算法性、精确性和可靠性。在这项工作中,我们仔细研究了在两个广为人知的网络动力系统--SIS 流行病和自适应选民模型--的均场描述中出现的矩系统。我们推导出了任何时刻闭合都必须满足的条件,从而使相应的闭合系统表现出人们所期望的来自随机粒子模型的跨临界分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信