Model-Based Graph Reinforcement Learning for Inductive Traffic Signal Control

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
François-Xavier Devailly;Denis Larocque;Laurent Charlin
{"title":"Model-Based Graph Reinforcement Learning for Inductive Traffic Signal Control","authors":"François-Xavier Devailly;Denis Larocque;Laurent Charlin","doi":"10.1109/OJITS.2024.3376583","DOIUrl":null,"url":null,"abstract":"We introduce MuJAM, an adaptive traffic signal control method which leverages model-based reinforcement learning to 1) extend recent generalization efforts (to road network architectures and traffic distributions) further by allowing a generalization to the controllers’ constraints (cyclic and acyclic policies), 2) improve performance and data efficiency over related model-free approaches, and 3) enable explicit coordination at scale for the first time. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as a recent transferable approach.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"238-250"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10470423","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10470423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce MuJAM, an adaptive traffic signal control method which leverages model-based reinforcement learning to 1) extend recent generalization efforts (to road network architectures and traffic distributions) further by allowing a generalization to the controllers’ constraints (cyclic and acyclic policies), 2) improve performance and data efficiency over related model-free approaches, and 3) enable explicit coordination at scale for the first time. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as a recent transferable approach.
基于模型的归纳式交通信号控制图强化学习
我们介绍的 MuJAM 是一种自适应交通信号控制方法,它利用基于模型的强化学习:1)通过对控制器的约束条件(循环和非循环策略)进行泛化,进一步扩展了最近的泛化工作(针对道路网络结构和交通流量分布);2)与相关的无模型方法相比,提高了性能和数据效率;3)首次实现了大规模的显式协调。在涉及训练过程中从未经历过的道路网络和交通设置的零次传输设置中,以及在涉及曼哈顿 3971 名交通信号控制器控制的更大规模传输实验中,我们证明了使用循环和非循环约束的 MuJAM 优于特定领域基线以及最近的一种可传输方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信