Calogero–Moser eigenfunctions modulo \(p^s\)

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Alexander Gorsky, Alexander Varchenko
{"title":"Calogero–Moser eigenfunctions modulo \\(p^s\\)","authors":"Alexander Gorsky,&nbsp;Alexander Varchenko","doi":"10.1007/s11005-024-01792-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we use the Matsuo–Cherednik duality between the solutions to the Knizhnik–Zamolodchikov (KZ) equations and eigenfunctions of Calogero–Moser Hamiltonians to get the polynomial <span>\\(p^s\\)</span>-truncation of the Calogero–Moser eigenfunctions at a rational coupling constant. The truncation procedure uses the integral representation for the hypergeometric solutions to KZ equations. The <span>\\(s\\rightarrow \\infty \\)</span> limit to the pure <i>p</i>-adic case has been analyzed in the <span>\\(n=2\\)</span> case.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01792-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we use the Matsuo–Cherednik duality between the solutions to the Knizhnik–Zamolodchikov (KZ) equations and eigenfunctions of Calogero–Moser Hamiltonians to get the polynomial \(p^s\)-truncation of the Calogero–Moser eigenfunctions at a rational coupling constant. The truncation procedure uses the integral representation for the hypergeometric solutions to KZ equations. The \(s\rightarrow \infty \) limit to the pure p-adic case has been analyzed in the \(n=2\) case.

Calogero-Moser 特征函数模块 $$p^s$$。
在这篇论文中,我们利用克尼日尼克-扎莫洛奇科夫(Knizhnik-Zamolodchikov,KZ)方程的解与卡洛吉罗-莫瑟哈密顿的特征函数之间的马祖-切列德尼克对偶性,得到了卡洛吉罗-莫瑟特征函数在有理耦合常数处的多(p^s\)-截断(polynomial \(p^s\)-truncation of the Calogero-Moser eigenfunctions at a rational coupling constant)。截断过程使用的是 KZ 方程超几何解的积分表示法。在(n=2\)情况下分析了纯p-adic情况的(s\rightarrow \infty\)极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信