Guannan Li, Yi Xiao, Jia Leng, Qinian Lou, Tianfu Zhao
{"title":"Beneficial efficacy and mode of action of probiotic Bacillus subtilis SWL−19 on the silkworm (Bombyx mori L.)","authors":"Guannan Li, Yi Xiao, Jia Leng, Qinian Lou, Tianfu Zhao","doi":"10.1007/s13199-024-00986-4","DOIUrl":null,"url":null,"abstract":"<p>The safety and efficacy of probiotic <i>Bacillus subtilis</i> to raising animals in the livestock and poultry have been widely evaluated. Silkworm (<i>Bombyx mori</i> L.) is a well-known economic rearing insect, and its artificial diet rearing is gaining interest. However, the effects of probiotic <i>B</i>. <i>subtilis</i> as feed additive on silkworms fed with an artificial diet remain unknown. In this study, we adopted multiple biological approaches (enzyme activity assay, quantitative PCR, transcriptome sequencing, and LC-MS) to explore the beneficial effects of <i>B</i>. <i>subtilis</i> SWL−19 on silkworm physiology. Results showed that the body weights of the silkworms significantly increased (<i>P</i> < 0.05) after feeding with SWL−19 strain. <i>B</i>. <i>subtilis</i> SWL−19 evidently enhanced the antioxidant property in the silkworms, and the gene expression levels of antimicrobial peptides (attacin, lysozyme, and cecropins) were affected by the SWL−19 strain. Moreover, the levels of riboflavin, nicotinamide, pyridoxine, and pyridoxal in the hemolymph of the silkworms remarkably increased after SWL−19 strain feeding. The results of transcriptomic analysis indicated that the response of intestinal tissues to <i>B</i>. <i>subtilis</i> SWL−19 focused mainly on the categories of external biotic stimulus, interspecies interaction between organisms, immune system process, and stress response. In conclusion, probiotic <i>B</i>. <i>subtilis</i> SWL−19 substantially enhanced the body weight and antioxidant property of silkworm and simultaneously regulated the intestinal immunity and promoted the metabolism of B vitamins. The present study provides a theoretical reference for the application of probiotic <i>B</i>. <i>subtilis</i> SWL−19 to improve silkworm physiology under artificial diet rearing condition.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-024-00986-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The safety and efficacy of probiotic Bacillus subtilis to raising animals in the livestock and poultry have been widely evaluated. Silkworm (Bombyx mori L.) is a well-known economic rearing insect, and its artificial diet rearing is gaining interest. However, the effects of probiotic B. subtilis as feed additive on silkworms fed with an artificial diet remain unknown. In this study, we adopted multiple biological approaches (enzyme activity assay, quantitative PCR, transcriptome sequencing, and LC-MS) to explore the beneficial effects of B. subtilis SWL−19 on silkworm physiology. Results showed that the body weights of the silkworms significantly increased (P < 0.05) after feeding with SWL−19 strain. B. subtilis SWL−19 evidently enhanced the antioxidant property in the silkworms, and the gene expression levels of antimicrobial peptides (attacin, lysozyme, and cecropins) were affected by the SWL−19 strain. Moreover, the levels of riboflavin, nicotinamide, pyridoxine, and pyridoxal in the hemolymph of the silkworms remarkably increased after SWL−19 strain feeding. The results of transcriptomic analysis indicated that the response of intestinal tissues to B. subtilis SWL−19 focused mainly on the categories of external biotic stimulus, interspecies interaction between organisms, immune system process, and stress response. In conclusion, probiotic B. subtilis SWL−19 substantially enhanced the body weight and antioxidant property of silkworm and simultaneously regulated the intestinal immunity and promoted the metabolism of B vitamins. The present study provides a theoretical reference for the application of probiotic B. subtilis SWL−19 to improve silkworm physiology under artificial diet rearing condition.
期刊介绍:
Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field.
Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.