Flow Spatiotemporal Moran's I: Measuring the Spatiotemporal Autocorrelation of Flow Data

IF 3.3 3区 地球科学 Q1 GEOGRAPHY
Qingyang Fu, Mengjie Zhou, Yige Li, Xiang Ye, Mengjie Yang, Yuhui Wang
{"title":"Flow Spatiotemporal Moran's I: Measuring the Spatiotemporal Autocorrelation of Flow Data","authors":"Qingyang Fu,&nbsp;Mengjie Zhou,&nbsp;Yige Li,&nbsp;Xiang Ye,&nbsp;Mengjie Yang,&nbsp;Yuhui Wang","doi":"10.1111/gean.12397","DOIUrl":null,"url":null,"abstract":"<p>Flows can reflect the spatiotemporal interactions or movements of geographical objects between different locations. Measuring the spatiotemporal autocorrelation of flows can help determine the overall spatiotemporal trends and local patterns. However, quantitative indicators of flows used to measure spatiotemporal autocorrelation both globally and locally are still rare. Therefore, we propose the global and local flow spatiotemporal Moran's <i>I</i> (FSTI). The global FSTI is used to assess the overall spatiotemporal autocorrelation degree of flows, and the local FSTI is applied to identify local spatiotemporal clusters and outliers. In the FSTI, to reflect flow spatiotemporal adjacency relationships, we establish flow spatiotemporal weights by multiplying the spatial and temporal weights of flows considering spatiotemporal orthogonality. The flow spatial weights include contiguity-based (considering first/higher-order and common border) and Euclidean distance-based weights. The temporal weights consider ordinary and lagged cases. As flow attributes may follow a long-tail distribution, we conduct Monte Carlo simulations to evaluate the statistical significance of the results. We assess the FSTI using synthetic datasets and Chinese population mobility datasets, and compare some results with those of recent flow-related methods. Additionally, we perform a sensitivity analysis to select a suitable temporal threshold. The results show that the FSTI can be used to effectively detect spatiotemporal variations in the autocorrelation degree and type.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"56 4","pages":"799-824"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12397","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Flows can reflect the spatiotemporal interactions or movements of geographical objects between different locations. Measuring the spatiotemporal autocorrelation of flows can help determine the overall spatiotemporal trends and local patterns. However, quantitative indicators of flows used to measure spatiotemporal autocorrelation both globally and locally are still rare. Therefore, we propose the global and local flow spatiotemporal Moran's I (FSTI). The global FSTI is used to assess the overall spatiotemporal autocorrelation degree of flows, and the local FSTI is applied to identify local spatiotemporal clusters and outliers. In the FSTI, to reflect flow spatiotemporal adjacency relationships, we establish flow spatiotemporal weights by multiplying the spatial and temporal weights of flows considering spatiotemporal orthogonality. The flow spatial weights include contiguity-based (considering first/higher-order and common border) and Euclidean distance-based weights. The temporal weights consider ordinary and lagged cases. As flow attributes may follow a long-tail distribution, we conduct Monte Carlo simulations to evaluate the statistical significance of the results. We assess the FSTI using synthetic datasets and Chinese population mobility datasets, and compare some results with those of recent flow-related methods. Additionally, we perform a sensitivity analysis to select a suitable temporal threshold. The results show that the FSTI can be used to effectively detect spatiotemporal variations in the autocorrelation degree and type.

流量时空莫兰 I:测量流量数据的时空自相关性
流量可以反映地理物体在不同地点之间的时空互动或移动。测量流量的时空自相关性有助于确定整体时空趋势和局部模式。然而,用于测量全球和局部时空自相关性的定量流量指标仍然很少见。因此,我们提出了全球和局部流量时空莫兰 I(FSTI)。全局 FSTI 用于评估流量的整体时空自相关度,局部 FSTI 用于识别局部时空集群和异常值。在 FSTI 中,为了反映流量的时空邻接关系,我们在考虑时空正交性的基础上,将流量的空间权重和时间权重相乘,从而建立流量的时空权重。流量空间权重包括基于毗连性(考虑一阶/高阶和共同边界)的权重和基于欧氏距离的权重。时间权重考虑了普通情况和滞后情况。由于流量属性可能呈长尾分布,我们进行了蒙特卡罗模拟,以评估结果的统计意义。我们使用合成数据集和中国人口流动数据集对 FSTI 进行了评估,并将一些结果与最近的流量相关方法进行了比较。此外,我们还进行了敏感性分析,以选择合适的时间阈值。结果表明,FSTI 可以有效地检测自相关程度和类型的时空变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
5.60%
发文量
40
期刊介绍: First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信