Coherent interface between optical and microwave photons on an integrated superconducting atom chip

IF 5.8 2区 物理与天体物理 Q1 OPTICS
David Petrosyan, József Fortágh, Gershon Kurizki
{"title":"Coherent interface between optical and microwave photons on an integrated superconducting atom chip","authors":"David Petrosyan,&nbsp;József Fortágh,&nbsp;Gershon Kurizki","doi":"10.1140/epjqt/s40507-024-00229-x","DOIUrl":null,"url":null,"abstract":"<div><p>Sub-wavelength arrays of atoms exhibit remarkable optical properties, analogous to those of phased array antennas, such as collimated directional emission or nearly perfect reflection of light near the collective resonance frequency. We propose to use a single-sheet sub-wavelength array of atoms as a switchable mirror to achieve a coherent interface between propagating optical photons and microwave photons in a superconducting coplanar waveguide resonator. In the proposed setup, the atomic array is located near the surface of the integrated superconducting chip containing the microwave cavity and optical waveguide. A driving laser couples the excited atomic state to Rydberg states with strong microwave transition. Then the presence or absence of a microwave photon in the superconducting cavity makes the atomic array transparent or reflective to the incoming optical pulses of proper frequency and finite bandwidth.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00229-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00229-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sub-wavelength arrays of atoms exhibit remarkable optical properties, analogous to those of phased array antennas, such as collimated directional emission or nearly perfect reflection of light near the collective resonance frequency. We propose to use a single-sheet sub-wavelength array of atoms as a switchable mirror to achieve a coherent interface between propagating optical photons and microwave photons in a superconducting coplanar waveguide resonator. In the proposed setup, the atomic array is located near the surface of the integrated superconducting chip containing the microwave cavity and optical waveguide. A driving laser couples the excited atomic state to Rydberg states with strong microwave transition. Then the presence or absence of a microwave photon in the superconducting cavity makes the atomic array transparent or reflective to the incoming optical pulses of proper frequency and finite bandwidth.

集成超导原子芯片上的光子与微波光子相干界面
亚波长原子阵列显示出与相控阵天线类似的非凡光学特性,例如准直定向发射或在集体共振频率附近对光进行近乎完美的反射。我们建议使用单片亚波长原子阵列作为可切换镜面,以实现超导共面波导谐振器中传播的光学光子与微波光子之间的相干界面。在提议的装置中,原子阵列位于包含微波腔和光波导的集成超导芯片表面附近。驱动激光将激发的原子态耦合到具有强微波转变的雷德贝格态。然后,超导腔中微波光子的存在或不存在会使原子阵列对输入的适当频率和有限带宽的光脉冲透明或反射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信