Bismark C. Torrico , Juliana S. Barros , Felipe J.S. Vasconcelos , Fabrício G. Nogueira , Julio E. Normey-Rico
{"title":"Control of cascaded series dead-time processes with ideal achievable disturbance attenuation using a predictors-based structure","authors":"Bismark C. Torrico , Juliana S. Barros , Felipe J.S. Vasconcelos , Fabrício G. Nogueira , Julio E. Normey-Rico","doi":"10.1016/j.jprocont.2024.103193","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a cascade series control structure and design for two series processes represented by first-order plus dead-time FOPDT models. The proposed controller uses two series predictors, one for each process, and can deal with stable, unstable, or integrative processes. The design follows similar principles of the simplified filtered Smith Predictor (SFSP) for a single-loop dead-time system. Initially, the primary controller, composed of a set-point static gain and two feedback controllers, is tuned to achieve the desired set-point tracking. Then, the predictor filters are tuned to ensure stability, robustness, and disturbance attenuation. Different from standard cascaded SFSP, one of the feedback controllers, instead of only a static gain, includes a finite time integral. The main advantage of this approach is that disturbances generated in the primary or secondary process can be handled independently by the predictor filters, simplifying the tuning procedure and enhancing the overall control performance. Additionally, for the nominal case, the proposed cascaded controller allows obtaining an ideal set-point tracking and disturbance rejection. After the dead-time effect, the proposed cascade controller achieves the set point exponentially and rejects exponentially step-like disturbances where the user defines the time constants of the exponentials. Simulation results demonstrate the advantages of the proposed controller compared to other recently published approaches, mainly in the inner loop disturbance rejection, which is precisely what is expected from a series cascade controller.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"137 ","pages":"Article 103193"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000337","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a cascade series control structure and design for two series processes represented by first-order plus dead-time FOPDT models. The proposed controller uses two series predictors, one for each process, and can deal with stable, unstable, or integrative processes. The design follows similar principles of the simplified filtered Smith Predictor (SFSP) for a single-loop dead-time system. Initially, the primary controller, composed of a set-point static gain and two feedback controllers, is tuned to achieve the desired set-point tracking. Then, the predictor filters are tuned to ensure stability, robustness, and disturbance attenuation. Different from standard cascaded SFSP, one of the feedback controllers, instead of only a static gain, includes a finite time integral. The main advantage of this approach is that disturbances generated in the primary or secondary process can be handled independently by the predictor filters, simplifying the tuning procedure and enhancing the overall control performance. Additionally, for the nominal case, the proposed cascaded controller allows obtaining an ideal set-point tracking and disturbance rejection. After the dead-time effect, the proposed cascade controller achieves the set point exponentially and rejects exponentially step-like disturbances where the user defines the time constants of the exponentials. Simulation results demonstrate the advantages of the proposed controller compared to other recently published approaches, mainly in the inner loop disturbance rejection, which is precisely what is expected from a series cascade controller.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.