Auto-segmentation of neck nodal metastases using self-distilled masked image transformer on longitudinal MR images.

BJR artificial intelligence Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI:10.1093/bjrai/ubae004
Ramesh Paudyal, Jue Jiang, James Han, Bill H Diplas, Nadeem Riaz, Vaios Hatzoglou, Nancy Lee, Joseph O Deasy, Harini Veeraraghavan, Amita Shukla-Dave
{"title":"Auto-segmentation of neck nodal metastases using self-distilled masked image transformer on longitudinal MR images.","authors":"Ramesh Paudyal, Jue Jiang, James Han, Bill H Diplas, Nadeem Riaz, Vaios Hatzoglou, Nancy Lee, Joseph O Deasy, Harini Veeraraghavan, Amita Shukla-Dave","doi":"10.1093/bjrai/ubae004","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Auto-segmentation promises greater speed and lower inter-reader variability than manual segmentations in radiation oncology clinical practice. This study aims to implement and evaluate the accuracy of the auto-segmentation algorithm, \"Masked Image modeling using the vision Transformers (SMIT),\" for neck nodal metastases on longitudinal T<sub>2</sub>-weighted (T<sub>2</sub>w) MR images in oropharyngeal squamous cell carcinoma (OPSCC) patients.</p><p><strong>Methods: </strong>This prospective clinical trial study included 123 human papillomaviruses (HPV-positive [+]) related OSPCC patients who received concurrent chemoradiotherapy. T<sub>2</sub>w MR images were acquired on 3 T at pre-treatment (Tx), week 0, and intra-Tx weeks (1-3). Manual delineations of metastatic neck nodes from 123 OPSCC patients were used for the SMIT auto-segmentation, and total tumor volumes were calculated. Standard statistical analyses compared contour volumes from SMIT vs manual segmentation (Wilcoxon signed-rank test [WSRT]), and Spearman's rank correlation coefficients (<i>ρ</i>) were computed. Segmentation accuracy was evaluated on the test data set using the dice similarity coefficient (DSC) metric value. <i>P</i>-values <0.05 were considered significant.</p><p><strong>Results: </strong>No significant difference in manual and SMIT delineated tumor volume at pre-Tx (8.68 ± 7.15 vs 8.38 ± 7.01 cm<sup>3</sup>, <i>P</i> = 0.26 [WSRT]), and the Bland-Altman method established the limits of agreement as -1.71 to 2.31 cm<sup>3</sup>, with a mean difference of 0.30 cm<sup>3</sup>. SMIT model and manually delineated tumor volume estimates were highly correlated (<i>ρ</i> = 0.84-0.96, <i>P</i> < 0.001). The mean DSC metric values were 0.86, 0.85, 0.77, and 0.79 at the pre-Tx and intra-Tx weeks (1-3), respectively.</p><p><strong>Conclusions: </strong>The SMIT algorithm provides sufficient segmentation accuracy for oncological applications in HPV+ OPSCC.</p><p><strong>Advances in knowledge: </strong>First evaluation of auto-segmentation with SMIT using longitudinal T<sub>2</sub>w MRI in HPV+ OPSCC.</p>","PeriodicalId":517427,"journal":{"name":"BJR artificial intelligence","volume":"1 1","pages":"ubae004"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bjrai/ubae004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Auto-segmentation promises greater speed and lower inter-reader variability than manual segmentations in radiation oncology clinical practice. This study aims to implement and evaluate the accuracy of the auto-segmentation algorithm, "Masked Image modeling using the vision Transformers (SMIT)," for neck nodal metastases on longitudinal T2-weighted (T2w) MR images in oropharyngeal squamous cell carcinoma (OPSCC) patients.

Methods: This prospective clinical trial study included 123 human papillomaviruses (HPV-positive [+]) related OSPCC patients who received concurrent chemoradiotherapy. T2w MR images were acquired on 3 T at pre-treatment (Tx), week 0, and intra-Tx weeks (1-3). Manual delineations of metastatic neck nodes from 123 OPSCC patients were used for the SMIT auto-segmentation, and total tumor volumes were calculated. Standard statistical analyses compared contour volumes from SMIT vs manual segmentation (Wilcoxon signed-rank test [WSRT]), and Spearman's rank correlation coefficients (ρ) were computed. Segmentation accuracy was evaluated on the test data set using the dice similarity coefficient (DSC) metric value. P-values <0.05 were considered significant.

Results: No significant difference in manual and SMIT delineated tumor volume at pre-Tx (8.68 ± 7.15 vs 8.38 ± 7.01 cm3, P = 0.26 [WSRT]), and the Bland-Altman method established the limits of agreement as -1.71 to 2.31 cm3, with a mean difference of 0.30 cm3. SMIT model and manually delineated tumor volume estimates were highly correlated (ρ = 0.84-0.96, P < 0.001). The mean DSC metric values were 0.86, 0.85, 0.77, and 0.79 at the pre-Tx and intra-Tx weeks (1-3), respectively.

Conclusions: The SMIT algorithm provides sufficient segmentation accuracy for oncological applications in HPV+ OPSCC.

Advances in knowledge: First evaluation of auto-segmentation with SMIT using longitudinal T2w MRI in HPV+ OPSCC.

在纵向磁共振图像上使用自蒸发掩蔽图像变换器自动分割颈部结节转移瘤
目的:在放射肿瘤学临床实践中,与手动分割相比,自动分割的速度更快,阅片员之间的差异更小。本研究旨在对口咽鳞状细胞癌(OPSCC)患者纵向 T2 加权(T2w)磁共振图像上颈部结节转移的自动分割算法 "使用视觉变换器(SMIT)的掩蔽图像建模 "的准确性进行实施和评估:这项前瞻性临床试验研究纳入了123例人乳头瘤病毒(HPV阳性[+])相关口咽鳞癌患者,这些患者同时接受了放化疗。在治疗前(Tx)、治疗第 0 周和治疗期间第 1-3 周以 3 T 采集 T2w MR 图像。123名OPSCC患者的转移性颈部结节的人工划线被用于SMIT自动分割,并计算出肿瘤总体积。标准统计分析比较了SMIT与手动分割的轮廓体积(Wilcoxon符号秩检验[WSRT]),并计算了斯皮尔曼秩相关系数(ρ)。使用骰子相似性系数 (DSC) 指标值评估测试数据集的分割准确性。P 值结果:手术前人工和 SMIT 划分的肿瘤体积无明显差异(8.68 ± 7.15 vs 8.38 ± 7.01 cm3,P = 0.26 [WSRT]),布兰-阿尔特曼法确定的一致界限为-1.71 至 2.31 cm3,平均差异为 0.30 cm3。SMIT 模型和人工划定的肿瘤体积估计值高度相关(ρ = 0.84-0.96,P 结论:SMIT 算法能提供足够的肿瘤体积估计值:SMIT算法为HPV+ OPSCC的肿瘤学应用提供了足够的分割准确性:首次使用纵向 T2w MRI 评估 SMIT 在 HPV+ OPSCC 中的自动分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信