PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data.

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Systems Biology Pub Date : 2024-05-01 Epub Date: 2024-03-12 DOI:10.1038/s44320-024-00029-6
Anastasia Razdaibiedina, Alexander Brechalov, Helena Friesen, Mojca Mattiazzi Usaj, Myra Paz David Masinas, Harsha Garadi Suresh, Kyle Wang, Charles Boone, Jimmy Ba, Brenda Andrews
{"title":"PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data.","authors":"Anastasia Razdaibiedina, Alexander Brechalov, Helena Friesen, Mojca Mattiazzi Usaj, Myra Paz David Masinas, Harsha Garadi Suresh, Kyle Wang, Charles Boone, Jimmy Ba, Brenda Andrews","doi":"10.1038/s44320-024-00029-6","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website ( https://thecellvision.org/pifia/ ), PIFiA is a resource for the quantitative analysis of protein organization within the cell.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"521-548"},"PeriodicalIF":8.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066028/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00029-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website ( https://thecellvision.org/pifia/ ), PIFiA is a resource for the quantitative analysis of protein organization within the cell.

PIFiA:从单细胞成像数据中获得蛋白质功能注释的自监督方法。
荧光显微镜数据以单细胞分辨率描述了蛋白质定位模式,并有可能非常精确地揭示整个蛋白质组的功能信息。然而,从细胞显微照片中提取具有生物学意义的表征仍然是一项重大挑战。现有的方法往往无法学习稳健且噪声不变的特征,或者依赖监督标签来获得准确的注释。我们开发了 PIFiA(基于蛋白质图像的功能注释),这是一种从单细胞成像数据中进行蛋白质功能注释的自我监督方法。我们对全球酵母 ORF-GFP 数据库进行了成像,并应用 PIFiA 从荧光标记蛋白质的单细胞图像中生成蛋白质特征图谱。我们的研究表明,PIFiA 优于现有的分子表征学习方法,并描述了一系列下游分析任务,以探索特征图谱的信息内容。具体来说,我们将提取的特征聚类为功能组织层次,研究细胞群异质性,并开发了区分多定位蛋白和识别功能模块的技术。最后,我们利用共定位试验证实了新的 PIFiA 预测,并提出了一些蛋白质以前未被认识到的生物学作用。PIFiA 配有一个完全互动的网站(https://thecellvision.org/pifia/ ),是定量分析细胞内蛋白质组织的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信