Victória Trindade Pons, Annique Claringbould, Priscilla Kamphuis, Albertine J. Oldehinkel, Hanna M. van Loo
{"title":"Using parent-offspring pairs and trios to estimate indirect genetic effects in education","authors":"Victória Trindade Pons, Annique Claringbould, Priscilla Kamphuis, Albertine J. Oldehinkel, Hanna M. van Loo","doi":"10.1002/gepi.22554","DOIUrl":null,"url":null,"abstract":"<p>We investigated indirect genetic effects (IGEs), also known as genetic nurture, in education with a novel approach that uses phased data to include parent-offspring pairs in the transmitted/nontransmitted study design. This method increases the power to detect IGEs, enhances the generalizability of the findings, and allows for the study of effects by parent-of-origin. We validated and applied this method in a family-based subsample of adolescents and adults from the Lifelines Cohort Study in the Netherlands (<i>N</i> = 6147), using the latest genome-wide association study data on educational attainment to construct polygenic scores (PGS). Our results indicated that IGEs play a role in education outcomes in the Netherlands: we found significant associations of the nontransmitted PGS with secondary school level in youth between 13 and 24 years old as well as with education attainment and years of education in adults over 25 years old (<i>β</i> = 0.14, 0.17 and 0.26, respectively), with tentative evidence for larger maternal IGEs. In conclusion, we replicated previous findings and showed that including parent-offspring pairs in addition to trios in the transmitted/nontransmitted design can benefit future studies of parental IGEs in a wide range of outcomes.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 4","pages":"190-199"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22554","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22554","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated indirect genetic effects (IGEs), also known as genetic nurture, in education with a novel approach that uses phased data to include parent-offspring pairs in the transmitted/nontransmitted study design. This method increases the power to detect IGEs, enhances the generalizability of the findings, and allows for the study of effects by parent-of-origin. We validated and applied this method in a family-based subsample of adolescents and adults from the Lifelines Cohort Study in the Netherlands (N = 6147), using the latest genome-wide association study data on educational attainment to construct polygenic scores (PGS). Our results indicated that IGEs play a role in education outcomes in the Netherlands: we found significant associations of the nontransmitted PGS with secondary school level in youth between 13 and 24 years old as well as with education attainment and years of education in adults over 25 years old (β = 0.14, 0.17 and 0.26, respectively), with tentative evidence for larger maternal IGEs. In conclusion, we replicated previous findings and showed that including parent-offspring pairs in addition to trios in the transmitted/nontransmitted design can benefit future studies of parental IGEs in a wide range of outcomes.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.