Are trait-associated genes clustered together in a gene network?

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY
Hyun Jung Koo, Wei Pan
{"title":"Are trait-associated genes clustered together in a gene network?","authors":"Hyun Jung Koo,&nbsp;Wei Pan","doi":"10.1002/gepi.22557","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) have provided an abundance of information about the genetic variants and their loci that are associated to complex traits and diseases. However, due to linkage disequilibrium (LD) and noncoding regions of loci, it remains a challenge to pinpoint the causal genes. Gene network-based approaches, paired with network diffusion methods, have been proposed to prioritize causal genes and to boost statistical power in GWAS based on the assumption that trait-associated genes are clustered in a gene network. Due to the difficulty in mapping trait-associated variants to genes in GWAS, this assumption has never been directly or rigorously tested empirically. On the other hand, whole exome sequencing (WES) data focuses on the protein-coding regions, directly identifying trait-associated genes. In this study, we tested the assumption by leveraging the recently available exome-based association statistics from the UK Biobank WES data along with two types of networks. We found that almost all trait-associated genes were significantly more proximal to each other than randomly selected genes within both networks. These results support the assumption that trait-associated genes are clustered in gene networks, which can be further leveraged to boost the power of GWAS such as by introducing less stringent <i>p</i> value thresholds.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 5","pages":"203-213"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22557","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWAS) have provided an abundance of information about the genetic variants and their loci that are associated to complex traits and diseases. However, due to linkage disequilibrium (LD) and noncoding regions of loci, it remains a challenge to pinpoint the causal genes. Gene network-based approaches, paired with network diffusion methods, have been proposed to prioritize causal genes and to boost statistical power in GWAS based on the assumption that trait-associated genes are clustered in a gene network. Due to the difficulty in mapping trait-associated variants to genes in GWAS, this assumption has never been directly or rigorously tested empirically. On the other hand, whole exome sequencing (WES) data focuses on the protein-coding regions, directly identifying trait-associated genes. In this study, we tested the assumption by leveraging the recently available exome-based association statistics from the UK Biobank WES data along with two types of networks. We found that almost all trait-associated genes were significantly more proximal to each other than randomly selected genes within both networks. These results support the assumption that trait-associated genes are clustered in gene networks, which can be further leveraged to boost the power of GWAS such as by introducing less stringent p value thresholds.

Abstract Image

与性状相关的基因是否在基因网络中聚集在一起?
全基因组关联研究(GWAS)提供了大量关于与复杂性状和疾病相关的基因变异及其位点的信息。然而,由于基因位点的连锁不平衡(LD)和非编码区,要精确定位致病基因仍是一项挑战。基于性状相关基因聚集在基因网络中这一假设,人们提出了基于基因网络的方法,并将其与网络扩散方法相结合,以确定因果基因的优先顺序,并提高 GWAS 的统计能力。由于在 GWAS 中很难将性状相关变异映射到基因上,因此这一假设从未经过直接或严格的实证检验。另一方面,全外显子组测序(WES)数据侧重于蛋白质编码区,可直接识别性状相关基因。在本研究中,我们利用最近从英国生物库 WES 数据中获得的基于外显子组的关联统计以及两种类型的网络,对这一假设进行了检验。我们发现,在这两种网络中,几乎所有性状相关基因之间的距离都明显比随机选择的基因更近。这些结果支持了性状相关基因聚集在基因网络中的假设,可以进一步利用基因网络来提高 GWAS 的能力,如引入不那么严格的 p 值阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信