Cosmological constant as quantum error correction from generalized gauge invariance in double field theory

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, NUCLEAR
Andrei T. Patrascu
{"title":"Cosmological constant as quantum error correction from generalized gauge invariance in double field theory","authors":"Andrei T. Patrascu","doi":"10.1142/s0217751x24500155","DOIUrl":null,"url":null,"abstract":"<p>The holographic principle and its realization as the anti-de Sitter/conformal field theory (AdS/CFT) correspondence leads to the existence of the so-called precursor operators. These are boundary operators that carry nonlocal information regarding events occurring deep inside the bulk and which cannot be causally connected to the boundary. Such nonlocal operators can distinguish nonvacuum-like excitations within the bulk that cannot be observed by any local gauge invariant operators in the boundary. The boundary precursors are expected to become increasingly nonlocal the further the bulk process is from the boundary. Such phenomena are expected to be related to the extended nature of the strings. Standard gauge invariance in the boundary theory equates to quantum error correction which furthermore establishes localization of bulk information. I show that when double field theory quantum error correction prescriptions are considered in the bulk, gauge invariance in the boundary manifests residual effects associated to stringy winding modes. Also, an effect of double field theory quantum error correction is the appearance of positive cosmological constant. The emergence of space–time from the entanglement structure of a dual quantum field theory appears in this context to generalize for de Sitter space–times as well.</p>","PeriodicalId":50309,"journal":{"name":"International Journal of Modern Physics a","volume":"308 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217751x24500155","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The holographic principle and its realization as the anti-de Sitter/conformal field theory (AdS/CFT) correspondence leads to the existence of the so-called precursor operators. These are boundary operators that carry nonlocal information regarding events occurring deep inside the bulk and which cannot be causally connected to the boundary. Such nonlocal operators can distinguish nonvacuum-like excitations within the bulk that cannot be observed by any local gauge invariant operators in the boundary. The boundary precursors are expected to become increasingly nonlocal the further the bulk process is from the boundary. Such phenomena are expected to be related to the extended nature of the strings. Standard gauge invariance in the boundary theory equates to quantum error correction which furthermore establishes localization of bulk information. I show that when double field theory quantum error correction prescriptions are considered in the bulk, gauge invariance in the boundary manifests residual effects associated to stringy winding modes. Also, an effect of double field theory quantum error correction is the appearance of positive cosmological constant. The emergence of space–time from the entanglement structure of a dual quantum field theory appears in this context to generalize for de Sitter space–times as well.

宇宙常数作为双场理论中广义规整不变性的量子误差修正
全息原理及其作为反德西特/共形场论(AdS/CFT)对应关系的实现,导致了所谓前导算子的存在。这些边界算子携带着与发生在体块深处的事件有关的非局域信息,而这些信息无法与边界建立因果联系。这种非局部算子可以区分体内部的非真空样激发,而边界中的任何局部规整不变算子都无法观测到这些激发。预计边界前兆的非局域性会随着体过程离边界越远而越强。这种现象预计与弦的扩展性质有关。边界理论中的标准规不变性等同于量子纠错,而量子纠错则进一步确立了体信息的本地化。我的研究表明,当双场论量子纠错处方在体中被考虑时,边界中的规整不变性会表现出与弦绕模式相关的残余效应。此外,双场论量子纠错的一个效应是正宇宙学常数的出现。在这种情况下,从双量子场论的纠缠结构中出现的时空似乎也概括了德西特时空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Physics a
International Journal of Modern Physics a 物理-物理:核物理
CiteScore
3.00
自引率
12.50%
发文量
283
审稿时长
3 months
期刊介绍: Started in 1986, IJMPA has gained international repute as a high-quality scientific journal. It consists of important review articles and original papers covering the latest research developments in Particles and Fields, and selected topics intersecting with Gravitation and Cosmology. The journal also features articles of long-standing value and importance which can be vital to research into new unexplored areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信