Polarimetric Fourier Phase Retrieval

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Julien Flamant, Konstantin Usevich, Marianne Clausel, David Brie
{"title":"Polarimetric Fourier Phase Retrieval","authors":"Julien Flamant, Konstantin Usevich, Marianne Clausel, David Brie","doi":"10.1137/23m1570971","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 632-671, March 2024. <br/> Abstract. This work introduces polarimetric Fourier phase retrieval (PPR), a physically inspired model to leverage polarization of light information in Fourier phase retrieval problems. We provide a complete characterization of its uniqueness properties by unraveling equivalencies with two related problems, namely, bivariate phase retrieval and a polynomial autocorrelation factorization problem. In particular, we show that the problem admits a unique solution, which can be formulated as a greatest common divisor (GCD) of measurement polynomials. As a result, we propose algebraic solutions for PPR based on approximate GCD computations using the null-space properties of Sylvester matrices. Alternatively, existing iterative algorithms for phase retrieval, semidefinite positive relaxation and Wirtinger flow, are carefully adapted to solve the PPR problem. Finally, a set of numerical experiments permits a detailed assessment of the numerical behavior and relative performances of each proposed reconstruction strategy. They further demonstrate the fruitful combination of algebraic and iterative approaches toward a scalable, computationally efficient, and robust to noise reconstruction strategy for PPR.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1570971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 632-671, March 2024.
Abstract. This work introduces polarimetric Fourier phase retrieval (PPR), a physically inspired model to leverage polarization of light information in Fourier phase retrieval problems. We provide a complete characterization of its uniqueness properties by unraveling equivalencies with two related problems, namely, bivariate phase retrieval and a polynomial autocorrelation factorization problem. In particular, we show that the problem admits a unique solution, which can be formulated as a greatest common divisor (GCD) of measurement polynomials. As a result, we propose algebraic solutions for PPR based on approximate GCD computations using the null-space properties of Sylvester matrices. Alternatively, existing iterative algorithms for phase retrieval, semidefinite positive relaxation and Wirtinger flow, are carefully adapted to solve the PPR problem. Finally, a set of numerical experiments permits a detailed assessment of the numerical behavior and relative performances of each proposed reconstruction strategy. They further demonstrate the fruitful combination of algebraic and iterative approaches toward a scalable, computationally efficient, and robust to noise reconstruction strategy for PPR.
偏振傅立叶相位检索
SIAM 影像科学杂志》,第 17 卷第 1 期,第 632-671 页,2024 年 3 月。 摘要本研究介绍了偏振傅立叶相位检索(PPR),这是一种受物理启发的模型,可在傅立叶相位检索问题中利用光的偏振信息。我们通过揭示与两个相关问题(即双变量相位检索和多项式自相关因式分解问题)的等价性,提供了其唯一性属性的完整表征。我们特别指出,该问题有一个唯一解,可以表述为测量多项式的最大公因子(GCD)。因此,我们利用西尔维斯特矩阵的无效空间特性,提出了基于近似 GCD 计算的 PPR 代数解决方案。此外,我们还仔细调整了现有的相位检索迭代算法、半定正松弛算法和 Wirtinger 流算法,以解决 PPR 问题。最后,通过一系列数值实验,可以详细评估每种拟议重建策略的数值行为和相对性能。它们进一步证明了代数方法与迭代方法的有效结合,从而为 PPR 问题提供了一种可扩展、计算效率高且不受噪声影响的重建策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信