From manual to machine: assessing the efficacy of large language models in content analysis

IF 1.9 Q2 COMMUNICATION
Andrew Pilny, Kelly McAninch, Amanda Slone, Kelsey Moore
{"title":"From manual to machine: assessing the efficacy of large language models in content analysis","authors":"Andrew Pilny, Kelly McAninch, Amanda Slone, Kelsey Moore","doi":"10.1080/08824096.2024.2327547","DOIUrl":null,"url":null,"abstract":"This study compares the performance of Large Language Models (LLMs) and human coders in predicting relational uncertainty from textual data. Employing various LLMs (gpt-4.0-turbo, gpt-3.5-turbo, Cl...","PeriodicalId":47084,"journal":{"name":"Communication Research Reports","volume":"61 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication Research Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08824096.2024.2327547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares the performance of Large Language Models (LLMs) and human coders in predicting relational uncertainty from textual data. Employing various LLMs (gpt-4.0-turbo, gpt-3.5-turbo, Cl...
从人工到机器:评估大型语言模型在内容分析中的功效
本研究比较了大型语言模型(LLM)和人类编码员在预测文本数据中的关系不确定性方面的性能。采用不同的大型语言模型(gpt-4.0-turbo、gpt-3.5-turbo、Cl...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信