A Policy Gradient Algorithm for the Risk-Sensitive Exponential Cost MDP

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED
Mehrdad Moharrami, Yashaswini Murthy, Arghyadip Roy, R. Srikant
{"title":"A Policy Gradient Algorithm for the Risk-Sensitive Exponential Cost MDP","authors":"Mehrdad Moharrami, Yashaswini Murthy, Arghyadip Roy, R. Srikant","doi":"10.1287/moor.2022.0139","DOIUrl":null,"url":null,"abstract":"We study the risk-sensitive exponential cost Markov decision process (MDP) formulation and develop a trajectory-based gradient algorithm to find the stationary point of the cost associated with a set of parameterized policies. We derive a formula that can be used to compute the policy gradient from (state, action, cost) information collected from sample paths of the MDP for each fixed parameterized policy. Unlike the traditional average cost problem, standard stochastic approximation theory cannot be used to exploit this formula. To address the issue, we introduce a truncated and smooth version of the risk-sensitive cost and show that this new cost criterion can be used to approximate the risk-sensitive cost and its gradient uniformly under some mild assumptions. We then develop a trajectory-based gradient algorithm to minimize the smooth truncated estimation of the risk-sensitive cost and derive conditions under which a sequence of truncations can be used to solve the original, untruncated cost problem.Funding: This work was supported by the Office of Naval Research Global [Grant N0001419-1-2566], the Division of Computer and Network Systems [Grant 21-06801], the Army Research Office [Grant W911NF-19-1-0379], and the Division of Computing and Communication Foundations [Grants 17-04970 and 19-34986].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"7 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0139","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the risk-sensitive exponential cost Markov decision process (MDP) formulation and develop a trajectory-based gradient algorithm to find the stationary point of the cost associated with a set of parameterized policies. We derive a formula that can be used to compute the policy gradient from (state, action, cost) information collected from sample paths of the MDP for each fixed parameterized policy. Unlike the traditional average cost problem, standard stochastic approximation theory cannot be used to exploit this formula. To address the issue, we introduce a truncated and smooth version of the risk-sensitive cost and show that this new cost criterion can be used to approximate the risk-sensitive cost and its gradient uniformly under some mild assumptions. We then develop a trajectory-based gradient algorithm to minimize the smooth truncated estimation of the risk-sensitive cost and derive conditions under which a sequence of truncations can be used to solve the original, untruncated cost problem.Funding: This work was supported by the Office of Naval Research Global [Grant N0001419-1-2566], the Division of Computer and Network Systems [Grant 21-06801], the Army Research Office [Grant W911NF-19-1-0379], and the Division of Computing and Communication Foundations [Grants 17-04970 and 19-34986].
风险敏感指数成本 MDP 的策略梯度算法
我们研究了风险敏感指数成本马尔可夫决策过程(Markov decision process,MDP)公式,并开发了一种基于轨迹的梯度算法,以找到与一组参数化策略相关的成本静止点。我们推导出一个公式,可用于根据从每个固定参数化政策的 MDP 样本路径收集的(状态、行动、成本)信息计算政策梯度。与传统的平均成本问题不同,标准的随机逼近理论不能用来利用这个公式。为了解决这个问题,我们引入了风险敏感成本的截断和平滑版本,并证明在一些温和的假设条件下,这种新的成本标准可以用来均匀地近似风险敏感成本及其梯度。然后,我们开发了一种基于轨迹的梯度算法,以最小化风险敏感成本的平滑截断估计值,并推导出在哪些条件下可以使用一连串的截断来解决原始的、未截断的成本问题:这项工作得到了全球海军研究办公室[N0001419-1-2566 号资助]、计算机和网络系统部[21-06801 号资助]、陆军研究办公室[W911NF-19-1-0379 号资助]以及计算和通信基础部[17-04970 号和 19-34986 号资助]的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Operations Research
Mathematics of Operations Research 管理科学-应用数学
CiteScore
3.40
自引率
5.90%
发文量
178
审稿时长
15.0 months
期刊介绍: Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信