Disentangling shared and private latent factors in multimodal Variational Autoencoders

Kaspar Märtens, Christopher Yau
{"title":"Disentangling shared and private latent factors in multimodal Variational Autoencoders","authors":"Kaspar Märtens, Christopher Yau","doi":"arxiv-2403.06338","DOIUrl":null,"url":null,"abstract":"Generative models for multimodal data permit the identification of latent\nfactors that may be associated with important determinants of observed data\nheterogeneity. Common or shared factors could be important for explaining\nvariation across modalities whereas other factors may be private and important\nonly for the explanation of a single modality. Multimodal Variational\nAutoencoders, such as MVAE and MMVAE, are a natural choice for inferring those\nunderlying latent factors and separating shared variation from private. In this\nwork, we investigate their capability to reliably perform this disentanglement.\nIn particular, we highlight a challenging problem setting where\nmodality-specific variation dominates the shared signal. Taking a cross-modal\nprediction perspective, we demonstrate limitations of existing models, and\npropose a modification how to make them more robust to modality-specific\nvariation. Our findings are supported by experiments on synthetic as well as\nvarious real-world multi-omics data sets.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.06338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative models for multimodal data permit the identification of latent factors that may be associated with important determinants of observed data heterogeneity. Common or shared factors could be important for explaining variation across modalities whereas other factors may be private and important only for the explanation of a single modality. Multimodal Variational Autoencoders, such as MVAE and MMVAE, are a natural choice for inferring those underlying latent factors and separating shared variation from private. In this work, we investigate their capability to reliably perform this disentanglement. In particular, we highlight a challenging problem setting where modality-specific variation dominates the shared signal. Taking a cross-modal prediction perspective, we demonstrate limitations of existing models, and propose a modification how to make them more robust to modality-specific variation. Our findings are supported by experiments on synthetic as well as various real-world multi-omics data sets.
在多模态变异自动编码器中分辨共享和私有潜在因素
多模态数据的生成模型允许识别可能与观察到的数据异质性的重要决定因素相关的潜在因素。共同的或共享的因素可能对解释不同模态的变化很重要,而其他因素可能是私有的,只对解释单一模态很重要。多模态变异自动编码器(如 MVAE 和 MMVAE)是推断潜在因素和区分共享变异与私人变异的自然选择。在这项工作中,我们研究了它们可靠地执行这种分离的能力。特别是,我们强调了一个具有挑战性的问题设置,即特定模态变异在共享信号中占主导地位。从跨模态预测的角度出发,我们展示了现有模型的局限性,并提出了如何使这些模型对特定模态变异更具鲁棒性的修改建议。我们的发现得到了合成数据集和各种真实世界多组学数据集实验的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信