{"title":"Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices","authors":"Daan Camps, Lin Lin, Roel Van Beeumen, Chao Yang","doi":"10.1137/22m1484298","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 801-827, March 2024. <br/> Abstract. Many standard linear algebra problems can be solved on a quantum computer by using recently developed quantum linear algebra algorithms that make use of block encodings and quantum eigenvalue/singular value transformations. A block encoding embeds a properly scaled matrix of interest [math] in a larger unitary transformation [math] that can be decomposed into a product of simpler unitaries and implemented efficiently on a quantum computer. Although quantum algorithms can potentially achieve exponential speedup in solving linear algebra problems compared to the best classical algorithm, such a gain in efficiency ultimately hinges on our ability to construct an efficient quantum circuit for the block encoding of [math], which is difficult in general, and not trivial even for well structured sparse matrices. In this paper, we give a few examples on how efficient quantum circuits can be explicitly constructed for some well structured sparse matrices and discuss a few strategies used in these constructions. We also provide implementations of these quantum circuits in MATLAB.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"18 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1484298","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 801-827, March 2024. Abstract. Many standard linear algebra problems can be solved on a quantum computer by using recently developed quantum linear algebra algorithms that make use of block encodings and quantum eigenvalue/singular value transformations. A block encoding embeds a properly scaled matrix of interest [math] in a larger unitary transformation [math] that can be decomposed into a product of simpler unitaries and implemented efficiently on a quantum computer. Although quantum algorithms can potentially achieve exponential speedup in solving linear algebra problems compared to the best classical algorithm, such a gain in efficiency ultimately hinges on our ability to construct an efficient quantum circuit for the block encoding of [math], which is difficult in general, and not trivial even for well structured sparse matrices. In this paper, we give a few examples on how efficient quantum circuits can be explicitly constructed for some well structured sparse matrices and discuss a few strategies used in these constructions. We also provide implementations of these quantum circuits in MATLAB.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.